Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make config.json consistent between shortfin and sharktank #487

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
19 changes: 2 additions & 17 deletions build_tools/integration_tests/llm/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,22 +117,6 @@ def model_test_dir(request, tmp_path_factory):
logger.info(f"Model successfully compiled to {vmfb_path}")

# Write config if it doesn't exist
edited_config_path = tmp_dir / "edited_config.json"
config = {
"module_name": "module",
"module_abi_version": 1,
"max_seq_len": 2048,
"attn_head_count": 32,
"attn_head_dim": 100,
"prefill_batch_sizes": batch_sizes,
"decode_batch_sizes": batch_sizes,
"transformer_block_count": 26,
"paged_kv_cache": {"block_seq_stride": 16, "device_block_count": 256},
}
logger.info(f"Saving edited config to: {edited_config_path}\n")
logger.info(f"Config: {json.dumps(config, indent=2)}")
with open(edited_config_path, "w") as f:
json.dump(config, f)
logger.info("Model artifacts setup successfully")
yield hf_home, tmp_dir
finally:
Expand Down Expand Up @@ -198,7 +182,8 @@ def llm_server(request, model_test_dir, available_port):
"-m",
"shortfin_apps.llm.server",
f"--tokenizer_json={hf_home / 'tokenizer.json'}",
f"--model_config={tmp_dir / 'edited_config.json'}",
f"--tokenizer_config_json={hf_home / 'tokenizer_config.json'}",
f"--model_config={tmp_dir / 'config.json'}",
f"--vmfb={tmp_dir / 'model.vmfb'}",
f"--parameters={hf_home / model_file}",
f"--device={settings['device']}",
Expand Down
5 changes: 4 additions & 1 deletion build_tools/integration_tests/llm/cpu_llm_server_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,10 @@ def do_generate(prompt, port):
# Create a GenerateReqInput-like structure
data = {
"text": prompt,
"sampling_params": {"max_completion_tokens": 50, "temperature": 0.7},
"sampling_params": {
"max_completion_tokens": 20, # enough to span multiple pages
"temperature": 0.7,
},
"rid": uuid.uuid4().hex,
"return_logprob": False,
"logprob_start_len": -1,
Expand Down
19 changes: 16 additions & 3 deletions sharktank/sharktank/examples/export_paged_llm_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
"""Export support for the PagedLLMV1 protocol of models."""

import json
from typing import Any, Dict
import torch

from iree.turbine.aot import *
Expand Down Expand Up @@ -89,17 +90,29 @@ def main():
else:
model = PagedLlamaModelV1(dataset.root_theta, llama_config)

def generate_params_json(hp, prefill_bs: list[int], decode_bs: list[int]):
def generate_params_json(
hp: LlamaHParams, prefill_bs: list[int], decode_bs: list[int]
) -> Dict[str, Any]:
"""
Generate config.json for shortfin.


For shortfin, we only write attention_head_count_kv because that's all shortfin needs.
Note that this is different from hp.attn_head_count when grouped attention shares kvcache between heads.
"""
return {
"module_name": "module",
"module_abi_version": 1,
"max_seq_len": hp.context_length,
"attn_head_count": hp.attention_head_count,
"attn_head_dim": hp.attn_head_dim,
"prefill_batch_sizes": prefill_bs,
"decode_batch_sizes": decode_bs,
"transformer_block_count": hp.block_count,
"block_seq_stride": llama_config.block_seq_stride,
"paged_kv_cache": {
"attention_head_count_kv": hp.attention_head_count_kv,
"block_seq_stride": llama_config.block_seq_stride,
"device_block_count": 256, # so that this makes its way into the config file & can be edited.
},
}

# Unrolling cache updates by batch row makes dynamo sad without an
Expand Down
33 changes: 21 additions & 12 deletions shortfin/python/shortfin_apps/llm/components/config_struct.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,20 +11,20 @@
In a typical transformer model, the KV cache is organized similar to (mapped to
our parameter names below):
k = tensor.empty(transformer_block_count, batch_size, seq,
attn_head_count, attn_head_dim)
attn_head_count_kv, attn_head_dim)
v = ...

For context, a popular model has parameters of:
attn_dtype_size = 2 # (fp16)
max_seq_len = 2048
transformer_block_count = 32
attn_head_count = 32
attn_head_count_kv = 32
attn_head_dim = 128 # (dim / head_count)

If paging, then we primarily care about the organization of a single block, where
a block represents a single position in the sequence for a single item in the batch.
Therefore, it will be organized like:
block = torch.empty(transformer_block_count, 2, attn_head_count, attn_head_dim)
block = torch.empty(transformer_block_count, 2, attn_head_count_kv, attn_head_dim)

In this scenario, we declare that one block holds the KV cache for all transformer
block layers because it reduces the accounting. As such, for the above example,
Expand Down Expand Up @@ -80,29 +80,38 @@ def _decode_dtype(name: str) -> sfnp.DType:
class PagedKVCacheParams:
"""Parameters for the paged KV cache."""

# Position stride per attention block
# Tokens per page.
block_seq_stride: int

# Number of attention heads per block. This can be different from the model's
# attention head count due to sharing.
attention_head_count_kv: int

# Size of the cache on each device.
# Default: 256
device_block_count: int


@dataclass_json(undefined=Undefined.RAISE)
@dataclass
class ModelParams:
"""Parameters for a specific compiled model, sufficient to do cache planning and
invocations."""
"""
Parameters for a specific compiled model, sufficient to do cache planning and
invocations.

Compatibility should be maintained with function generate_params_json in

sharktank/sharktank/examples/export_paged_llm_v1.py
"""

# Maximum length of a sequence including prompt and output.
max_seq_len: int

# Number of transformer blocks.
# Number of transformer layers (aka attention blocks / transformer blocks).
transformer_block_count: int

# Number of attention heads per block.
attn_head_count: int

# Dimensionality of each attention head
# Dimensionality of each attention head. This is the dimensionality of the
# key and value vectors. AKA rope_dimension_count from the GGUF props.
attn_head_dim: int

# Batch sizes that the prefill stage is compiled for. These are expected to be
Expand Down Expand Up @@ -157,7 +166,7 @@ def paged_kv_unit_size_elements(self) -> int:
size = 1
size *= self.transformer_block_count
size *= 2 # K and V cache line
size *= self.attn_head_count
size *= self.paged_kv_cache.attention_head_count_kv
size *= self.attn_head_dim
return size

Expand Down
7 changes: 5 additions & 2 deletions shortfin/tests/apps/llm/components/cache_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,12 +45,15 @@ def model_params():
"module_name": "module",
"module_abi_version": 1,
"max_seq_len": 2048,
"attn_head_count": 32,
"attn_head_dim": 100,
"prefill_batch_sizes": [4],
"decode_batch_sizes": [4],
"transformer_block_count": 26,
"paged_kv_cache": {"block_seq_stride": 16, "device_block_count": 256},
"paged_kv_cache": {
"attention_head_count_kv": 32,
"block_seq_stride": 16,
"device_block_count": 256,
},
}

# Create a temporary file to store the JSON
Expand Down
Loading