Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New Hybrid Modules #1309

Draft
wants to merge 41 commits into
base: main
Choose a base branch
from
Draft

New Hybrid Modules #1309

wants to merge 41 commits into from

Conversation

jamesmkrieger
Copy link
Contributor

@jamesmkrieger jamesmkrieger commented Feb 16, 2021

This builds upon ClustENM to provide implementations for other hybrid methods.

It is tested with a new hybrid method built around adaptive ANM, which works successfully. The following test code produces a transition from 1akeA to 4akeA as confirmed by the plots below and visualisation of the output (not shown):

import matplotlib.pyplot as plt
plt.ion()

from prody import *

r = parsePDB('1akeA')
t = parsePDB('4akeA')

self = AdaptiveHybrid('test')
self.setAtoms(r, t)
self.run(n_gens=20)

plt.figure()
rmsd_from_start = self.getRMSDs()
plt.plot(rmsd_from_start)
plt.savefig('ake_adaptiveHybrid_RMSDs_A')
plt.close()

plt.figure()
rmsd_from_start = self.getRMSDsB()
plt.plot(rmsd_from_start)
plt.savefig('ake_adaptiveHybrid_RMSDs_B')
plt.close()

ake_adaptiveHybrid_RMSDs_A
ake_adaptiveHybrid_RMSDs_B

@jamesmkrieger jamesmkrieger marked this pull request as draft February 16, 2021 17:11
@jamesmkrieger
Copy link
Contributor Author

jamesmkrieger commented Feb 17, 2021

We can now run ClustENM and then filter to only keep conformers that have the same or better CCC to a target map than a reference structure (this follows MDeNM-EMFit):

import matplotlib.pyplot as plt
plt.ion()

from prody import *

from TEMPy.protein.structure_blurrer import StructureBlurrer

o = parsePDB('1gruA')
c = parsePDB('1gr5A')

proc = 2

if proc == 1:
    ens = ClustENM('test')
    ens.setAtoms(o)
    ens.run(n_gens=3, maxclust=(10, 30, 50))

    saveEnsemble(ens, '1gruA_clustenm.ens.npz')
    writePDB('1gruA_clustenm.pdb', ens)
else:
    ens = loadEnsemble('1gruA_clustenm.ens.npz')

    atoms = ens.getAtoms()
    amap = alignChains(atoms, o.ca)[0]
    ens.setAtoms(amap)

    mean_conf = amap.copy()
    mean_conf.setCoords(ens.getCoords())

    plt.figure()
    rmsd_from_start = ens.getRMSDs()
    plt.plot(rmsd_from_start)
    plt.savefig('1gruA_clustenm_RMSDs')
    plt.close()

    cmap = alignChains(c, mean_conf)[0]
    c_alg, T = superpose(cmap, mean_conf, weights=cmap.getFlags('mapped'))

    rmsd_from_cmap = [calcRMSD(coordset, cmap, weights=cmap.getFlags('mapped'))
                     for coordset in ens.getCoordsets()]
    plt.figure()
    plt.plot(rmsd_from_cmap)
    plt.savefig('1gruA_clustenm_RMSDs_from_1gr5A')
    plt.close()

    blurrer = StructureBlurrer()
    c_Structure = c.toTEMPyStructure()
    c_blurred = blurrer.gaussian_blur(c_Structure, 5,
                                    filename=c.getTitle()+'.mrc')
    c_blurred.write_to_MRC_file(c_blurred.filename)

    defvec_to_cmap = calcDeformVector(mean_conf, cmap,
                                      weights=cmap.getFlags('mapped'))
    writeNMD('1gruA_to_1gr5A.defvec.nmd', defvec_to_cmap, mean_conf)

    omap = alignChains(o, mean_conf)[0]
    o_alg, T = superpose(omap, mean_conf, weights=cmap.getFlags('mapped'))

    rmsd_from_omap = [calcRMSD(coordset, omap, weights=omap.getFlags('mapped'))
                     for coordset in ens.getCoordsets()]
    plt.figure()
    plt.plot(rmsd_from_omap)
    plt.savefig('1gruA_clustenm_RMSDs_from_1gruA')
    plt.close()

    pca = PCA('1gruA ClustENM')
    pca.buildCovariance(ens)
    pca.calcModes()

    saveModel(pca, '1gruA_ClustENM.pca.npz')
    writeNMD('1gruA_ClustENM.pca.nmd', pca, mean_conf)

    plt.figure()
    showProjection(ens, pca[:2], label='ClustENM')
    showProjection(ens[0], pca[:2], c='c', markersize=10, label='1gruA (start)')
    showProjection(defvec_to_cmap, pca[:2], c='r', markersize=10, label='1gr5A')
    plt.legend()
    plt.savefig('1gruA_clustenm_pca_proj2d')
    xlim = plt.xlim()
    ylim = plt.ylim()
    plt.close()

    ens.setAtoms(atoms)
    ens.filterConformers(ref=o, target=c_blurred)

    ens.setAtoms(amap)
    plt.figure()
    showProjection(ens, pca[:2], label='ClustENM')
    showProjection(ens[0], pca[:2], c='c', markersize=10, label='1gruA (start)')
    showProjection(defvec_to_cmap, pca[:2], c='r', markersize=10, label='1gr5A')
    plt.legend()
    plt.xlim(xlim)
    plt.ylim(ylim)
    plt.savefig('1gruA_clustenm_filtered_pca_proj2d')
    plt.close()

    ens.setAtoms(atoms)

This can be seen on the PCA projections:
1gruA_clustenm_pca_proj2d
1gruA_clustenm_filtered_pca_proj2d

@jamesmkrieger jamesmkrieger changed the title New Hybrid Module New Hybrid Modules Feb 18, 2021
@jamesmkrieger
Copy link
Contributor Author

It was previously not adding the conformers to build the ensemble correctly because negative indexing needs to be different depending on whether there are an even or odd number of them.

@jamesmkrieger
Copy link
Contributor Author

It could be a good idea to sub/super class AdaptiveHybrid and CoMD so we don't need to keep changing both of them.

@jamesmkrieger jamesmkrieger added the Enhancement Improvement to an already-existing feature. label Sep 15, 2021
@atbogetti atbogetti self-assigned this May 7, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Enhancement Improvement to an already-existing feature.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants