Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Forkless transformers [4.34.1] #2199

Merged
merged 19 commits into from
Mar 29, 2024
Merged
Show file tree
Hide file tree
Changes from 18 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ With the models downloaded, we will set up the Hugging Face `tokenizer`, `config
We instantiate these classes by passing the local path to the directory containing the `pytorch_model.bin`, `tokenizer.json`, and `config.json` files from the SparseZoo download.

```python
from sparseml.transformers.utils import SparseAutoModel
from sparseml.transformers import SparseAutoModel
from transformers import AutoModelForSequenceClassification, AutoConfig, AutoTokenizer

NUM_LABELS = 2
Expand Down
3 changes: 1 addition & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,7 @@
"opencv-python<=4.6.0.66",
]
_transformers_deps = _pytorch_deps + [
f"{'nm-transformers' if is_release else 'nm-transformers-nightly'}"
f"~={version_nm_deps}",
"transformers<4.35.0",
"datasets<=2.14.6",
"dvc",
"scikit-learn",
Expand Down
3 changes: 1 addition & 2 deletions src/sparseml/evaluation/integrations/perplexity.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,7 @@

from typing import List, Optional, Union

from sparseml.transformers.utils.sparse_model import SparseAutoModelForCausalLM
from sparseml.transformers.utils.sparse_tokenizer import SparseAutoTokenizer
from sparseml.transformers import SparseAutoModelForCausalLM, SparseAutoTokenizer


try:
Expand Down
31 changes: 28 additions & 3 deletions src/sparseml/export/validators.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@
import os.path
from collections import OrderedDict
from pathlib import Path
from typing import Callable, List, Optional, Union
from typing import Callable, List, Optional
dbogunowicz marked this conversation as resolved.
Show resolved Hide resolved
from typing import OrderedDict as OrderedDictType
from typing import Union
dbogunowicz marked this conversation as resolved.
Show resolved Hide resolved

import numpy
import onnx

from sparseml.export.export_data import InputsNames, LabelNames, OutputsNames
from sparseml.export.helpers import ONNX_MODEL_NAME, onnx_data_files
Expand Down Expand Up @@ -164,8 +167,11 @@ def validate_correctness(

sample_inputs_files = sorted(glob.glob(os.path.join(sample_inputs_path, "*")))
sample_outputs_files = sorted(glob.glob(os.path.join(sample_outputs_path, "*")))

session = ort.InferenceSession(os.path.join(directory, onnx_model_name))
model_path = os.path.join(directory, onnx_model_name)
expected_input_names = [
inp.name for inp in onnx.load(model_path, load_external_data=False).graph.input
]
session = ort.InferenceSession(model_path)

validations = (
[]
Expand All @@ -180,6 +186,11 @@ def validate_correctness(
sample_input_with_batch_dim = OrderedDict(
(key, numpy.expand_dims(value, 0)) for key, value in sample_input.items()
)

sample_input_with_batch_dim = _potentially_rename_input(
sample_input_with_batch_dim, expected_input_names
)

outputs = session.run(None, sample_input_with_batch_dim)
if isinstance(outputs, list):
validations_sample = []
Expand All @@ -205,3 +216,17 @@ def validate_correctness(
f"Successfully validated the exported model on all {len(validations)} samples."
)
return True


def _potentially_rename_input(
sample_input_with_batch_dim: OrderedDictType[str, numpy.ndarray],
expected_input_names: List[str],
) -> OrderedDictType[str, numpy.ndarray]:
# if required, rename the input names of the sample to match
# the input names of the model
input_names = list(sample_input_with_batch_dim.keys())
if set(input_names) != set(expected_input_names):
return OrderedDict(
zip(expected_input_names, sample_input_with_batch_dim.values())
)
return sample_input_with_batch_dim
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
ScheduledModifier,
ScheduledUpdateModifier,
)
from sparseml.pytorch.utils import get_layer, get_prunable_layers, replace_layer
from sparseml.pytorch.utils import get_layer, get_prunable_layers, swap_modules
from sparseml.pytorch.utils.logger import BaseLogger
from sparseml.sparsification import SparsificationTypes
from sparseml.utils import ALL_PRUNABLE_TOKEN, ALL_TOKEN, validate_str_iterable
Expand Down Expand Up @@ -219,11 +219,11 @@ def _check_update_pruning(self, module: Module, epoch: float, steps_per_epoch: i
epoch >= self.start_epoch or self.start_epoch == -1
):
for name in list(self._layer_modules.keys()):
self._layer_modules[name] = replace_layer(module, name, Identity())
self._layer_modules[name] = swap_modules(module, name, Identity())
self._layers_replaced = True

if self._layers_replaced and (epoch >= self.end_epoch and self.end_epoch != -1):
for name, replaced in self._layer_modules.items():
replace_layer(module, name, replaced)
swap_modules(module, name, replaced)
self._layer_modules[name] = None
self._layers_replaced = False
62 changes: 36 additions & 26 deletions src/sparseml/pytorch/utils/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,12 +85,12 @@
"tensor_sample",
"mask_difference",
"get_layer",
"replace_layer",
"get_terminal_layers",
"get_conv_layers",
"get_linear_layers",
"get_prunable_layers",
"get_quantizable_layers",
"swap_modules",
"get_named_layers_and_params_by_regex",
"any_str_or_regex_matches_param_name",
"NamedLayerParam",
Expand Down Expand Up @@ -725,31 +725,6 @@ def get_layer(name: str, module: Module) -> Module:
return layer


def replace_layer(
module: Module,
name: str,
replace: Module,
) -> Module:
"""
General function to replace a layer in a module with the given new one.

:param module: the module to replace the layer in
:param name: the name of the layer to replace the activation for
:param replace: the module to replace the layer with
:return: the original layer that was replaced
"""
parent = module
sections = name.split(".")

for sec in sections[:-1]:
parent = parent.__getattr__(sec)

cur = parent.__getattr__(sections[-1])
parent.__setattr__(sections[-1], replace)

return cur


def get_terminal_layers(module: Module) -> Dict[str, Module]:
"""
:param module: the module to grab all terminal layers for
Expand Down Expand Up @@ -1248,3 +1223,38 @@ def _exe_input(_, inp, out):
for h in handles:
h.remove()
return order


def swap_modules(
module: torch.nn.Module, submodule_name: str, submodule_to_replace: torch.nn.Module
) -> torch.nn.Module:
"""
Iteratively unfold the submodules of the module according to the submodule_name
to eventually replace the leaf submodule (accessed from the module through the
submodule_name) with the submodule_to_replace.

E.g
```
swap_modules(module=Model,
module_name="layers.0.sublayer",
module_to_replace=ReplaceModule
)
```
this will iteratively traverse through the submodules
'layers' -> '0' -> to eventually replace 'sublayer' with ReplaceModule

:param module: the module to replace with the module_to_replace
:param submodule_name: the name of the module to replace
:param submodule_to_replace: the module to replace the module with
:return: the replaced module
"""
parent = module
sections = submodule_name.split(".")

for sec in sections[:-1]:
parent = parent.__getattr__(sec)

cur = parent.__getattr__(sections[-1])
parent.__setattr__(sections[-1], submodule_to_replace)

return cur
41 changes: 8 additions & 33 deletions src/sparseml/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,46 +17,21 @@
"""

# flake8: noqa

import logging as _logging

from sparseml.analytics import sparseml_analytics as _analytics
from sparseml.transformers.base import check_transformers_install


try:
import datasets as _datasets
import transformers as _transformers
except ImportError:
raise ImportError("Please install sparseml[transformers] to use this pathway")


check_transformers_install()
_analytics.send_event("python__transformers__init")


_LOGGER = _logging.getLogger(__name__)


def _check_transformers_install():
# check for NM integration in transformers version
import transformers as _transformers

if not getattr(_transformers, "NM_INTEGRATED", False):
message = (
"****************************************************************\n"
"WARNING: It appears that the Neural Magic fork of Transformers is not installed!\n"
"This is CRITICAL for the proper application of quantization in SparseML flows.\n\n"
"To resolve this, please run: `pip uninstall transformers;pip install nm-transformers`\n"
"Failing to do so is UNSUPPORTED and may significantly affect model performance.\n"
"****************************************************************"
)
_LOGGER.warning(message)


_check_transformers_install()

# isort: skip_file
# (import order matters for circular import avoidance)
from .utils import *
from .sparsification import (
SparseAutoModel,
SparseAutoModelForCausalLM,
SparseAutoConfig,
SparseAutoTokenizer,
)
from .export import *
from .finetune import *
from .compression import *
29 changes: 29 additions & 0 deletions src/sparseml/transformers/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging


_LOGGER = logging.getLogger(__name__)


def check_transformers_install():
try:
import transformers # noqa F401
except ImportError as transformers_err:
_LOGGER.warning(
"transformers dependency is not installed. "
"To install, run `pip sparseml[transformers]`"
)
raise transformers_err
3 changes: 1 addition & 2 deletions src/sparseml/transformers/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,9 +88,8 @@
from sparseml.pytorch.opset import TORCH_DEFAULT_ONNX_OPSET
from sparseml.pytorch.optim import ScheduledModifierManager
from sparseml.pytorch.utils import export_onnx
from sparseml.transformers import SparseAutoTokenizer
from sparseml.transformers import SparseAutoModel, SparseAutoTokenizer
from sparseml.transformers.sparsification import Trainer
from sparseml.transformers.utils import SparseAutoModel
from sparsezoo.utils.onnx import EXTERNAL_ONNX_DATA_NAME


Expand Down
5 changes: 4 additions & 1 deletion src/sparseml/transformers/finetune/text_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,10 @@
from sparseml.transformers.finetune.runner import StageRunner
from sparseml.transformers.finetune.trainer import Trainer
from sparseml.transformers.finetune.training_args import TrainingArguments
from sparseml.transformers.utils import SparseAutoModel, get_shared_tokenizer_src
from sparseml.transformers.sparsification.sparse_model import (
SparseAutoModel,
get_shared_tokenizer_src,
)
from sparseml.transformers.utils.helpers import detect_last_checkpoint


Expand Down
8 changes: 6 additions & 2 deletions src/sparseml/transformers/masked_language_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,12 @@
from transformers.utils.versions import require_version

from sparseml.pytorch.utils.distributed import record
from sparseml.transformers.sparsification import Trainer, TrainingArguments
from sparseml.transformers.utils import SparseAutoModel, get_shared_tokenizer_src
from sparseml.transformers.sparsification import (
SparseAutoModel,
Trainer,
TrainingArguments,
)
from sparseml.transformers.sparsification.sparse_model import get_shared_tokenizer_src


metadata_args = [
Expand Down
13 changes: 13 additions & 0 deletions src/sparseml/transformers/modify/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
3 changes: 2 additions & 1 deletion src/sparseml/transformers/question_answering.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,10 +47,11 @@
from sparseml.pytorch.utils.distributed import record
from sparseml.transformers.sparsification import (
QuestionAnsweringTrainer,
SparseAutoModel,
TrainingArguments,
postprocess_qa_predictions,
)
from sparseml.transformers.utils import SparseAutoModel, get_shared_tokenizer_src
from sparseml.transformers.sparsification.sparse_model import get_shared_tokenizer_src


# You can also adapt this script on your own question answering task.
Expand Down
3 changes: 3 additions & 0 deletions src/sparseml/transformers/sparsification/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,5 +20,8 @@
# flake8: noqa

from .question_answering import *
from .sparse_config import *
from .sparse_model import *
from .sparse_tokenizer import *
from .trainer import *
from .training_args import *
21 changes: 21 additions & 0 deletions src/sparseml/transformers/sparsification/modification/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# flake8: noqa
from .modify_model import modify_model
from .modifying_bert import *
from .modifying_distilbert import *
from .modifying_llama import *
from .modifying_mistral import *
from .modifying_mobilebert import *
from .modifying_opt import *
Loading
Loading