python Crispr Read to Oligo QUantification and Evaluation Tool
- pyCROQUET
Please contact the following for appropriate referencing methods:
- Keiran Raine ([email protected])
- Emre Karakoc ([email protected])
- Victoria Offord ([email protected])
Code in place to support read input from any of the following formats:
- fastq (also gzip compressed)
- sam
- bam
- cram
- single-guide
- Short single end read quantification.
- dual-guide
- Paired end read quantification.
- long-read
- Long single end read quantification
- guides-to-fa
- Convert guides to fasta for use with
samtools tview
- Convert guides to fasta for use with
All options are not applicable to all subcommands, however the majority are common.
Please see the Guide library format for a description of this file.
Currently the dual-guide
mode only supports SAM/BAM/CRAM as input. Convert fastq to unmapped CRAM with:
# if data has casava read barcode/qc (text after space in read name) please add "-i"
samtools import --output-fmt CRAM,no_ref=1 -@ 4 -1 $READ1 -2 $READ2 -o $OUTFILE.cram
Chunks should be set to a value that allows all CPUs to be utilized. The value is multiplied by the number of CPUs requested and this give the number of unique read sequences held in memory during the mapping phase.
This has a direct impact on memory. The value is automatically reduced when too large to allow full use of requested CPUs.
For single-guide --rules MM
(allow 2 mismatches in alignment) is a sensible value. For other subcommands the decision
is dependent on the library protocol.
Rules have a direct impact on run time as they increase the time taken to abort an alignment, individual costs are as follows:
M
= 1I
= 2 (single b.p.)D
= 2 (single b.p.)
Performance is only impacted by the maximum penalty you allow.
Be aware if you with to allow up to 2 mismatch
or 1 mismatch + 1 b.p. insert
you must specify:
pycroquet ... --rules MM --rules MI
For single-guide you have the option to suppress it via the --no-alignment
(-n
) option. In dual-guide it is tightly
linked to the pairing code so not possible to disable.
Reads that map uniquely are written with MAPQ>0
(score calculations have not been refined at this time). There are some
differences in how to interpret the data depending on if you are processing single-guide, dual-guide or long-read.
To get the reads that map uniquely to a guide element (sgrna_seq) use the sgrna_id
. This is primarily of use for single-guide
and long-read
:
samtools view -F 4 -q 1 result.cram $SGRNA_ID
To get a single instance of reads that map to a guide element but map equally well to others select for the SA
tag (requires samtools>=1.12):
samtools view -F 4 -F 256 -d SA result.cram $SGRNA_ID
To get reads that failed to map:
samtools view -f 4 result.cram
This is only applicable to dual-guide
.
You can pull reads by the guide id using samtools view
, this example counts R1 mapping to a guide (equivalent to the *.counts.tsv
result), replace/set $GUIDE_ID
as required:
samtools view -F 4 -f 64 -c -d YG:$GUIDE_ID result.cram
To select all the reads mapped to this guide grouped by readname:
samtools view -u -F 4 -d YG:$GUIDE_ID result.cram | samtools sort -n - | samtools view -b - > $GUIDE_ID.bam
FASTQ(.gz) input is not currently supported for dual guide, please prepare your data appropriately with samtools import
:
samtools import -@ 4 -1 R1.fastq.gz -2 R2.fastq.gz -O BAM -o OUTPUT.bam
Please review the import
options as casava information can be interpreted where appropriate.
The dual guide output extends the standard json statistics file adding pair_classifications
:
Classification | Description |
---|---|
match | same vector F/R |
aberrant_match | same vector pair, aberrant orientation |
f_multi_3p | 5p mapped F, 3p multihit |
f_multi_5p | 3p mapped F, 5p multihit |
r_multi_3p | 5p mapped R, 3p multihit |
r_multi_5p | 3p mapped R, 5p multihit |
f_open_3p | 5p mapped F, 3p open (unmapped) |
f_open_5p | 3p mapped F, 5p open (unmapped) |
r_open_3p | 5p mapped R, 3p open (unmapped) |
r_open_5p | 3p mapped R, 5p open (unmapped) |
swap | multi vector, uniq mapped |
ambiguous | both ends multi hit |
no_match | multi/unmapped either end |
The -b/--boundary-mode
option controls how the guide and read are allowed to overlap. Each section shows the types of
alignment allowed, to be valid they still need to pass rules and any minimum score.
In all cases XXX
indicates original sequence.
Boundary of sequence must be equal between target (guide) and query (read)
T: XXXXXX
Q: XXXXXX
Like the name suggests, valid alignments include those via exact
and:
T: XXXXX
Q: XXXXXX
T: XXXX
Q: XXXXXX
T: XXXXX
Q: XXXXXX
Reverse of TinQ
, valid alignments include those via exact
and:
T: XXXXXX
Q: XXXXX
T: XXXXXX
Q: XXXX
T: XXXXXX
Q: XXXXX
No boundary checks are performed, this allows more complex events, all alignments from exact
, TinQ
, QinT
plus:
T: XXXXXXX
Q: XXXXXXX
T: XXXXXXX
Q: XXXXXXX
You can use samtools tview to view the cram file, this is mainly useful when checking fuzzy matching or allowing all boundary types.
To make this more informative generate the fasta file for the sgrna elements:
pycroquet guides-to-fa --guidelib guide_library.tsv --fasta sgrna.fa
NOTE: a contig is the individual sgrna sequence, not the pair
Now use this with samtool tview
to view your alignments, see command line help to jump directly to a contig of interest
or ?
when using interactively.
samtools tview result.cram sgrna.fa
Will give a full screen output like this (N is just padded to screen width for short contigs):
1 11
CTAGTTCAGATAAAACAACNNNNNN
...................
...................
...................
...................
...................
................C..
...................
...................
pip install Cython
pip install pycroquet
There are pre-built images containing this codebase on quay.io. When pulling an image you must specify
the version there is no latest
.
The docker images are known to work correctly after import into a singularity image.
Python 3.9 or better required.
git clone [email protected]:cancerit/pycroquet.git
cd pycroquet
python3 -m venv venv
source venv/bin/activate
pip install -r requirements-dev.txt
python3 ./setup.py develop # dynamic build
# add/activate pre-commit
pip install pre-commit
pre-comomit install
brew update
brew install [email protected]
brew install libmagic
git clone [email protected]:cancerit/pycroquet.git
cd pycroquet
python3.9 -m venv venv
source venv/bin/activate
pip install -r requirements-dev.txt
python3 setup.sh develop
# add/activate pre-commit
pip install pre-commit
pre-comomit install
There are 4 layers to testing and standards:
- Local
venv
testing - Local
pre-commit
hooks - Tests embedded in
docker build
CI
tests
./tests/scripts/run_unit_tests.sh
Also confirm the distribution can be installed by building and installing it into a different venv:
rm -rf dist/
python3 setup.py sdist
# new terminal
python3 -m venv tmp-pycroquet-venv
source tmp-pycroquet-venv/bin/activate
pip install ~/pycroquet/dist/pycroquet-*.tar.gz
deactivate
rm -rf tmp-pycroquet-venv
This project additionally uses git pre-commit hooks via the pre-commit tool. These are concerned
with file formats and standards, not the actual execution of code. See ./.pre-commit-config.yaml
.
The Docker build includes the unit tests, but removes many of the libraries before the final build stage. Mainly for CI tests.
CI includes 2 additional tests, each based on the 2 datasets in the ./examples
directory.
Please use skywalking-eyes.
Expected workflow:
- Check state before modifying
.licenserc.yaml
:docker run -it --rm -v $(pwd):/github/workspace apache/skywalking-eyes header check
- You should get some 'valid' here, those without a header as 'invalid'
- Modify
.licenserc.yaml
- Apply the changes:
docker run -it --rm -v $(pwd):/github/workspace apache/skywalking-eyes header fix
- Add/commit changes
This is executed in the CI pipeline.
DO NOT edit the header in the files, please modify the date component of content
in .licenserc.yaml
. The only exception being:
README.md
If you need to make more extensive changes to the license carefully test the pattern is functional.
Copyright (c) 2021-2022
Author: CASM/Cancer IT <[email protected]>
This file is part of pycroquet.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
1. The usage of a range of years within a copyright statement contained within
this distribution should be interpreted as being equivalent to a list of years
including the first and last year specified and all consecutive years between
them. For example, a copyright statement that reads ‘Copyright (c) 2005, 2007-
2009, 2011-2012’ should be interpreted as being identical to a statement that
reads ‘Copyright (c) 2005, 2007, 2008, 2009, 2011, 2012’ and a copyright
statement that reads ‘Copyright (c) 2005-2012’ should be interpreted as being
identical to a statement that reads ‘Copyright (c) 2005, 2006, 2007, 2008,
2009, 2010, 2011, 2012’.