Skip to content
forked from USTCzzl/HRG_Net

high resolution network for robotic grasping

License

Notifications You must be signed in to change notification settings

USTC-ICR/HRG_Net

 
 

Repository files navigation

HRG_Net

To reduce the spatial dimensional inaccuracy due to upsampling in the traditional CNN framework, we develop a novel grasping visual architecture referred to as High resolution grasp nerual network (HRG-Net), a parallel-branch structure that always maintains a high-resolution representation and repeatedly exchanges information across resolutions.

This repository contains the implementation of the High Resolution Grasp Nerual Network(HRG-Net) from the paper: A Robotic Visual Grasping Design: Rethinking Convolution Neural Network with High-Resolutions

arxiv|video

Contact

Any questions or comments contact mail.

Installation

conda create -n hrgnet python==3.8
conda activate hrgnet
pip install -r requirements.txt / conda env create -f environment.yaml

Datasets

Cornell | Jacquard | multiobject(Just for test)

Training

python train_hrgnet.py

Evaluation/Visualisation

For validation and visualization purposes, we provide our previously trained model

python evaluation_grasp.py    # For Cornell and Jacquard dataset

python evaluation_heatmap.py  # For Cornell and Jacquard dataset

python multi_grasp_visualization.py # For multiobject dataset

Acknowledgement

Code heavily inspired and modified from https://github.com/dougsm/ggcnn. The code for the experiments related to the robot in the physical environment will be released later

About

high resolution network for robotic grasping

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%