forked from USTCzzl/HRG_Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_k_fold.py
258 lines (211 loc) · 10.1 KB
/
train_k_fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import datetime
import os
import sys
import argparse
import logging
import cv2
import torch
import torch.utils.data
import torch.optim as optim
from torchsummary import summary
from sklearn.model_selection import KFold
#from traning import train, validate
from utils.data import get_dataset
from models.common import post_process_output
from utils.dataset_processing import evaluation
#from models.swin import SwinTransformerSys
# from models.Swin_without_skipconcetion import SwinTransformerSys
logging.basicConfig(level=logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description='TF-Grasp')
# Network
# Dataset & Data & Training
parser.add_argument('--dataset', type=str,default="jaquard", help='Dataset Name ("cornell" or "jaquard or multi")')
parser.add_argument('--dataset-path', type=str,default="/home/zzl/Pictures/cornell" ,help='Path to dataset')
parser.add_argument('--dataset-path1', type=str,default="/home/zzl/Pictures/cornelltest" ,help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=1, help='Use Depth image for training (1/0)')
parser.add_argument('--use-rgb', type=int, default=0, help='Use RGB image for training (0/1)')
parser.add_argument('--split', type=float, default=0.9, help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split for cross validation.')
parser.add_argument('--num-workers', type=int, default=8, help='Dataset workers')
parser.add_argument('--batch-size', type=int, default=16, help='Batch size')
parser.add_argument('--epochs', type=int, default=2000, help='Training epochs')
parser.add_argument('--batches-per-epoch', type=int, default=500, help='Batches per Epoch')
parser.add_argument('--val-batches', type=int, default=201, help='Validation Batches')
# Logging etc.
parser.add_argument('--description', type=str, default='', help='Training description')
parser.add_argument('--outdir', type=str, default='output/models/', help='Training Output Directory')
args = parser.parse_args()
return args
def validate(net, device, val_data, batches_per_epoch):
"""
Run validation.
:param net: Network
:param device: Torch device
:param val_data: Validation Dataset
:param batches_per_epoch: Number of batches to run
:return: Successes, Failures and Losses
"""
net.eval()
results = {
'correct': 0,
'failed': 0,
'loss': 0,
'losses': {
}
}
ld = len(val_data)
with torch.no_grad():
batch_idx = 0
while batch_idx < batches_per_epoch:
for x, y, didx, rot, zoom_factor in val_data:
batch_idx += 1
if batches_per_epoch is not None and batch_idx >= batches_per_epoch:
break
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
results['loss'] += loss.item()/ld
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()/ld
q_out, ang_out, w_out = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
s = evaluation.calculate_iou_match(q_out, ang_out,
val_data.dataset.get_gtbb(didx, rot, zoom_factor),
no_grasps=1,
grasp_width=w_out,
)
if s:
results['correct'] += 1
else:
results['failed'] += 1
return results
def train(epoch, net, device, train_data, optimizer, batches_per_epoch, vis=False,scheduler=None):
"""
Run one training epoch
:param epoch: Current epoch
:param net: Network
:param device: Torch device
:param train_data: Training Dataset
:param optimizer: Optimizer
:param batches_per_epoch: Data batches to train on
:param vis: Visualise training progress
:return: Average Losses for Epoch
"""
results = {
'loss': 0,
'losses': {
}
}
net.train()
batch_idx = 0
index=0
count=1
# Use batches per epoch to make training on different sized datasets (cornell/jacquard) more equivalent.
# while batch_idx < batches_per_epoch:
while index < count:
index=index+1
batch_idx=0
for x, y, _, _, _ in train_data:
# print("shape:",x.shape)
batch_idx += 1
# if batch_idx >= batches_per_epoch:
# break
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
if batch_idx % 100 == 0:
logging.info('Epoch: {}, Batch: {}, Loss: {:0.4f}'.format(epoch, batch_idx, loss.item()))
results['loss'] += loss.item()
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# scheduler.step()
# Display the images
if vis:
imgs = []
n_img = min(4, x.shape[0])
for idx in range(n_img):
imgs.extend([x[idx,].numpy().squeeze()] + [yi[idx,].numpy().squeeze() for yi in y] + [
x[idx,].numpy().squeeze()] + [pc[idx,].detach().cpu().numpy().squeeze() for pc in lossd['pred'].values()])
gridshow('Display', imgs,
[(xc.min().item(), xc.max().item()), (0.0, 1.0), (0.0, 1.0), (-1.0, 1.0), (0.0, 1.0)] * 2 * n_img,
[cv2.COLORMAP_BONE] * 10 * n_img, 10)
cv2.waitKey(2)
results['loss'] /= batch_idx
for l in results['losses']:
results['losses'][l] /= batch_idx
return results
def run():
args = parse_args()
# Set-up output directories
dt = datetime.datetime.now().strftime('%y%m%d_%H%M')
net_desc = '{}_{}'.format(dt, '_'.join(args.description.split()))
save_folder = os.path.join(args.outdir, net_desc)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
dataset = Dataset(args.dataset_path, start=0.0, end=0.9, ds_rotate=args.ds_rotate,
random_rotate=True, random_zoom=True,
include_depth=args.use_depth, include_rgb=args.use_rgb)
# dataset1 = Dataset("/home/zzl/Pictures/cornelltest", start=0.0, end=1.0, ds_rotate=args.ds_rotate,
# random_rotate=True, random_zoom=True,
# include_depth=args.use_depth, include_rgb=args.use_rgb)
k_folds = 5
kfold = KFold(n_splits=k_folds, shuffle=True)
logging.info('Done')
logging.info('Loading Network...')
input_channels = 1*args.use_depth + 3*args.use_rgb
from models.parm import config
from models.HEHERnet_official import HRNet
net=HRNet(input_channels=input_channels,cfg=config)
#net = SwinTransformerSys(in_chans=input_channels,embed_dim=48,num_heads=[1,2,4,8])
device = torch.device("cuda:0")
net = net.to(device)
optimizer = optim.AdamW(net.parameters(), lr=1e-4)
listy = [x *30 for x in range(1,1000,3)]
schedule=torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=listy,gamma=0.9)
logging.info('Done')
best_iou = 0.0
for epoch in range(args.epochs):
accuracy=0.
for fold, (train_ids, test_ids) in enumerate(kfold.split(dataset)):
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids)
trainloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,num_workers=args.num_workers, sampler=train_subsampler)
testloader = torch.utils.data.DataLoader(
dataset,
batch_size=1,num_workers=args.num_workers, sampler=test_subsampler)
logging.info('Beginning Epoch {:02d}'.format(epoch))
print("lr:",optimizer.state_dict()['param_groups'][0]['lr'])
train_results = train(epoch, net, device, trainloader, optimizer, args.batches_per_epoch, )
schedule.step()
# Run Validation
logging.info('Validating...')
test_results = validate(net, device, testloader, args.val_batches)
logging.info('%d/%d = %f' % (test_results['correct'], test_results['correct'] + test_results['failed'],
test_results['correct']/(test_results['correct']+test_results['failed'])))
iou = test_results['correct'] / (test_results['correct'] + test_results['failed'])
accuracy+=iou
if iou > best_iou or epoch == 0 or (epoch % 50) == 0:
#torch.save(net, os.path.join(save_folder, 'epoch_%02d_iou_%0.2f' % (epoch, iou)))
torch.save(net, os.path.join(save_folder, 'epoch_%02d_iou_%0.4f' % (epoch, iou)), _use_new_zipfile_serialization=False)
# torch.save(net.state_dict(), os.path.join(save_folder, 'epoch_%02d_iou_%0.2f_statedict.pt' % (epoch, iou)))
best_iou = iou
schedule.step()
print("the accuracy:",accuracy/k_folds)
if __name__ == '__main__':
run()