Skip to content

Codebase to reproduce results in MILE: Model-based Intervention Learning

Notifications You must be signed in to change notification settings

USC-Lira/mile-code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MILE: Model-based Intervention Learning

Codebase to replicate the results for https://liralab.usc.edu/mile/.

Setting up the environment

  • Create a new conda environment: conda create -n mile python=3.10
  • Install required packages: pip install -r requirements.txt
  • Install Metaworld
  • Install MILE: pip install -e .

Dataset generation

You can generate a synthetic dataset of interventions using our intervention model if you have a trained agent and mental model.

python scripts/collect_synthetic_interventions.py \
--env_name 'peg-insert-side-v2' \
--n_episodes 20 \
--rollout_policy 'path_to_your_rollout_policy' \
--intervention_policy 'path_to_expert_policy' \
--mental_model 'path_to_trained_mental_model' \
--save_path 'path_to_save' 

In order to pretrain the agent and the mental model, you can follow SB3 and Imitation documents.

Training MILE

python scripts/train_mile.py --config 'config.json'

To reproduce results for Peg-Insert environment, download the pretrained models (using this drive link or via terminal) and extract the downloaded .zip file.

gdown 1bzKGyOmX1ZCmAWnZiq_sAFRxi3AXvm4t 
unzip trained_models.zip

Then run train_mile.py with the default config.json file.

Evaluating MILE

python scripts/eval_mile.py --trained_model 'path_to_your_trained_model_dir' --num_episodes 100

About

Codebase to reproduce results in MILE: Model-based Intervention Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages