Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add additional search engine, some fixes #103

Merged
merged 6 commits into from
Sep 26, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion proteobench/modules/dda_quant/datapoint.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import json
import numpy as np
from dataclasses import asdict, dataclass
from datetime import datetime

Expand Down Expand Up @@ -44,7 +45,7 @@ def calculate_plot_data(self, df):
nr_missing_0 = 0
for spec in species:
f = len(df[df[spec] == True])
sum_s = (df[df[spec] == True]["1|2_expected_ratio_diff"]).sum()
sum_s = np.nan_to_num(df[df[spec] == True]["1|2_expected_ratio_diff"], nan=0, neginf=-1000, posinf=1000).sum()
ratio = sum_s / f
prop_ratio = (f / len(df)) * ratio
prop_ratios.append(prop_ratio)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,10 @@ LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03 = "LFQ_Orbitrap_DDA_Condition_B_Sam

[species_expected_ratio]
[species_expected_ratio.YEAST]
"1|2" = 0.5
"1|2" = 2.0

[species_expected_ratio.ECOLI]
"1|2" = 1.5
"1|2" = 0.25

[species_expected_ratio.HUMAN]
"1|2" = 1.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,16 +28,16 @@ LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03 = 2

[species_expected_ratio]
[species_expected_ratio.YEAST]
"1|2" = 0.5
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01" = 0.5
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02" = 0.5
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03" = 0.5
"1|2" = 2.0
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01" = 2.0
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02" = 2.0
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03" = 2.0

[species_expected_ratio.ECOLI]
"1|2" = 1.5
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01" = 1.5
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02" = 1.5
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03" = 1.5
"1|2" = 0.25
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01" = 0.25
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02" = 0.25
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03|LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03" = 0.25

[species_expected_ratio.HUMAN]
"1|2" = 1.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,10 +28,10 @@ Charge = "Charge"

[species_expected_ratio]
[species_expected_ratio.YEAST]
"1|2" = 0.5
"1|2" = 2.0

[species_expected_ratio.ECOLI]
"1|2" = 1.5
"1|2" = 0.25

[species_expected_ratio.HUMAN]
"1|2" = 1.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,10 +28,10 @@ abundance_DDA_Condition_B_Sample_Alpha_03 = 2

[species_expected_ratio]
[species_expected_ratio.YEAST]
"1|2" = 0.5
"1|2" = 2.0

[species_expected_ratio.ECOLI]
"1|2" = 1.5
"1|2" = 0.25

[species_expected_ratio.HUMAN]
"1|2" = 1.0
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
[mapper]
"proteins" = "Proteins"
"peptide" = "Sequence"
"charge" = "Charge"

[replicate_mapper]
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01.mzML.gz" = 1
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02.mzML.gz" = 1
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03.mzML.gz" = 1
"LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01.mzML.gz" = 2
"LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02.mzML.gz" = 2
"LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03.mzML.gz" = 2

[run_mapper]
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01.mzML" = "LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_01"
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02.mzML" = "LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_02"
"LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03.mzML" = "LFQ_Orbitrap_DDA_Condition_A_Sample_Alpha_03"
"LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01.mzML" = "LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_01"
"LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02.mzML" = "LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_02"
"LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03.mzML" = "LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03"

[species_dict]
"YEAST" = "_YEAST"
"ECOLI" = "_ECOLI"
"HUMAN" = "_HUMAN"

[species_expected_ratio]
[species_expected_ratio.YEAST]
"1|2" = 2.0

[species_expected_ratio.ECOLI]
"1|2" = 0.25

[species_expected_ratio.HUMAN]
"1|2" = 1.0

[general]
contaminant_flag = "Cont_"
decoy_flag = false
min_count_multispec = 1
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,10 @@ abundance_B_3 = "LFQ_Orbitrap_DDA_Condition_B_Sample_Alpha_03"

[species_expected_ratio]
[species_expected_ratio.YEAST]
"1|2" = 0.5
"1|2" = 2.0

[species_expected_ratio.ECOLI]
"1|2" = 1.5
"1|2" = 0.25

[species_expected_ratio.HUMAN]
"1|2" = 1.0
Expand Down
2 changes: 2 additions & 0 deletions proteobench/modules/dda_quant/module.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,8 @@ def load_input_file(self, input_csv: str, input_format: str) -> pd.DataFrame:
input_data_frame = pd.read_csv(input_csv, sep="\t", low_memory=False)
elif input_format == "AlphaPept":
input_data_frame = pd.read_csv(input_csv, low_memory=False)
elif input_format == "Sage":
input_data_frame = pd.read_csv(input_csv, sep='\t', low_memory=False)
elif input_format == "MSFragger":
input_data_frame = pd.read_csv(input_csv, low_memory=False, sep="\t")
elif input_format == "WOMBAT":
Expand Down
4 changes: 3 additions & 1 deletion proteobench/modules/dda_quant/parse_settings.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
"MSFragger" : os.path.join(PARSE_SETTINGS_DIR, 'parse_settings_msfragger.toml'),
"Proline" : os.path.join(PARSE_SETTINGS_DIR, 'parse_settings_proline.toml'),
"AlphaPept" : os.path.join(PARSE_SETTINGS_DIR, 'parse_settings_alphapept.toml'),
"Sage" : os.path.join(PARSE_SETTINGS_DIR, 'parse_settings_sage.toml'),
"Custom" : os.path.join(PARSE_SETTINGS_DIR, 'parse_settings_custom.toml')
}

Expand All @@ -28,9 +29,10 @@
"MSFragger",
"Proline",
"WOMBAT",
"Sage",
"Custom")

LOCAL_DEVELOPMENT = False
LOCAL_DEVELOPMENT = True
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@scaramonche I guess you will have to decide about this change:)

enryH marked this conversation as resolved.
Show resolved Hide resolved

# For local development change below to the json and path, if you do not want to download it from github
DDA_QUANT_RESULTS_PATH = "https://raw.githubusercontent.com/Proteobench/Results_Module2_quant_DDA/main/results.json" #e.g., K:/results.json
Expand Down
34 changes: 19 additions & 15 deletions proteobench/modules/dda_quant/plot.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import numpy as np
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objects as go
import plotly.express as px
import streamlit as st
from streamlit_plotly_events import plotly_events

Expand All @@ -11,18 +11,21 @@ class PlotDataPoint:
def plot_bench(self, result_df: pd.DataFrame) -> go.Figure:
"""Plot results with Plotly Express."""

hist_data = [
np.array(result_df[result_df["YEAST"] == True]["1|2_ratio"]),
np.array(result_df[result_df["HUMAN"] == True]["1|2_ratio"]),
np.array(result_df[result_df["ECOLI"] == True]["1|2_ratio"]),
]
group_labels = [
"YEAST",
"HUMAN",
"ECOLI",
]

fig = ff.create_distplot(hist_data, group_labels, show_hist=False)
# Remove any precursors not arising from a known organism... contaminants?
result_df = result_df[result_df[["YEAST", "ECOLI", "HUMAN"]].any(axis=1)]
result_df["kind"] = result_df[["YEAST", "ECOLI", "HUMAN"]].apply(
lambda x: ["YEAST", "ECOLI", "HUMAN"][np.argmax(x)], axis=1
)
fig = px.histogram(
result_df,
x=np.log2(result_df["1|2_ratio"]),
color="kind",
marginal="rug",
histnorm="probability density",
barmode="overlay",
opacity=0.7,
nbins=100
)

fig.update_layout(
width=700,
Expand All @@ -39,9 +42,9 @@ def plot_bench(self, result_df: pd.DataFrame) -> go.Figure:
gridwidth=2,
),
)
fig.update_xaxes(range=[0, 4])
fig.update_xaxes(range=[-4, 4])
fig.update_xaxes(showgrid=True, gridcolor="lightgray", gridwidth=1)
# fig.update_yaxes(showgrid=True, gridcolor="lightgray", gridwidth=1)
fig.update_yaxes(showgrid=True, gridcolor="lightgray", gridwidth=1)

return fig

Expand All @@ -66,6 +69,7 @@ def plot_metric(self, benchmark_metrics_df: pd.DataFrame) -> go.Figure:
"MSFragger": "#ff7f0e",
"WOMBAT": "#7f7f7f",
"Proline": "#d62728",
"Sage": "#f74c00",
"Custom": "#9467bd",
}

Expand Down
Loading