Skip to content

Etienne66/spatioTemporalTransformer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spatio-Temporal Transformer Network for Video Restoration

This is implementation of the paper Spatio-Temporal Transformer Network for Video Restoration

Dependencies

The code was developed on python3 with pytorch 1.3.0 and PIL libraries. Please visit installation guide for pytorch installation. For installing the pillow simple type pip3 install pillow on terminal

Dataset

The code was trained on Deep Video Deblurring's dataset which can be accessed from this link. Unzip it into a desired folder. Alternatively, you can place your own videos under
dataset/qualitative_datasets/[video_file_name]/input as input and
dataset/qualitative_datasets/[video_file_name]/GT as ground truth videos
as frame extracted videos. This dataset structure can be used for both training and testing. You can extract a video into frames using ffmpeg with the following command
ffmpeg -i file.mpg -r 1/1 $foldername/%04d.jpg
where $foldername is desired folder for frame extraction

Training

For training you need to call main_spatio.py file with the corresponding option parameters.
usage: main_spatio.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS] [--lr LR] [--step STEP] [--cuda] [--resume RESUME] [--start-epoch START_EPOCH] [--threads THREADS] [--momentum MOMENTUM] [--weight-decay WEIGHT_DECAY] [--pretrained PRETRAINED] [--gpus GPUS] [--dataset DATASET]

optional arguments:

--batchSize BATCHSIZE Training batch size
--nEpochs NEPOCHS Number of epochs to train for
--lr LR Learning Rate. Default=0.1
--step STEP Sets the learning rate to the initial LR decayed by
momentum every n epochs, Default: n=10
--cuda Use cuda?
--resume RESUME Path to checkpoint (default: none)
--start-epoch START_EPOCH Manual epoch number (useful on restarts)
--threads THREADS Number of threads for data loader to use, Default: 1
--momentum MOMENTUM Momentum, Default: 0.9
--weight-decay WEIGHT_DECAY, --wd WEIGHT_DECAY Weight decay, Default: 1e-4
--pretrained PRETRAINED path to pretrained model (default: none)
--gpus GPUS gpu ids (default: 0)
--dataset DATASET the folder where dataset can be found with specified
--model MODEL the model to be trained. Default: spatio temporal transformer set by "spatio". Other options are "dvd" and "vdsr" for deep video deblurring and very deep super resolution method

structure

Example usage
python main_spatio.py --cuda --batchSize 32 --lr 0.1 --dataset /path/to/training/data --model vdsr

Test

Test is the eval_loop.py file. It takes both input and ground truth images, processes the input image using selected network and calculate the PSNR between model output and ground image and between ground truth image and input image
Testing is done with the eval_loop.py file
usage: eval_loop.py [-h] [--cuda] [--model MODEL] [--dataset DATASET] [--gpus GPUS]

optional arguments:
-h, --help show this help message and exit
--cuda use cuda?
--model MODEL model path
--dataset DATASET dataset name
--gpus GPUS gpu ids (default: 0)

Example usage
python eval_loop.py --cuda --model /path/to/model/file --dataset /path/to/test/data

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%