forked from alpErenSari/spatioTemporalTransformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_spatio.py
executable file
·164 lines (134 loc) · 6.69 KB
/
main_spatio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse, os, glob
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader, ConcatDataset
import torchvision.transforms as trans
from models import Net, DVDModel, spatioModel
from dataset import DatasetFromHdf5, DVDTrainingDataset
# Training settings
parser = argparse.ArgumentParser(description="PyTorch VDSR")
parser.add_argument("--batchSize", type=int, default=32, help="Training batch size")
parser.add_argument("--nEpochs", type=int, default=50, help="Number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.01, help="Learning Rate. Default=0.1")
parser.add_argument("--step", type=int, default=10, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=10")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint (default: none)")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
# parser.add_argument("--clip", type=float, default=0.4, help="Clipping Gradients. Default=0.4")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="Weight decay, Default: 1e-4")
parser.add_argument('--pretrained', default='', type=str, help='path to pretrained model (default: none)')
parser.add_argument("--gpus", default="0", type=str, help="gpu ids (default: 0)")
parser.add_argument("--dataset", default="../data/DeepVideoDeblurring_Dataset/quantitative_datasets/", type=str, help="the folder where dataset can be found")
parser.add_argument("--model", default="spatio", type=str, help="the model to be trained. Default: spatio temporal transformer set by \"spatio\". Other options are \"dvd\" and \"vdsr\" \
for deep video deblurring and very deep super resolution method")
def main():
global opt, model
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda:
print("=> use gpu id: '{}'".format(opt.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
# list all possible datasets
dataset_names = glob.glob(opt.dataset + "*")
# construct the traning by concatenating the available datasets
train_set_list = [DVDTrainingDataset(dataset_name) for dataset_name in dataset_names]
train_set = ConcatDataset(train_set_list)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print("===> Building model")
if opt.model == "spatio":
model = spatioModel()
elif opt.model == "vdsr":
model = Net()
elif opt.model == "dvd":
model = DVDModel()
else:
model = Net()
criterion = nn.MSELoss(reduction='mean')
print("===> Setting GPU")
if cuda:
model = model.cuda()
criterion = criterion.cuda()
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def train(training_data_loader, optimizer, model, criterion, epoch):
# lr = adjust_learning_rate(optimizer, epoch-1)
lr = opt.lr
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("Epoch = {}, lr = {}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, target = Variable(batch[0]), Variable(batch[1], requires_grad=False)
if opt.cuda:
input = input.cuda()
target = target.cuda()
# print("Input size is ", input.size())
# print("Label size is ", target.size())
# print("Output size is ", model(input).size())
# print("Iteration is ", iteration)
loss = criterion(model(input), target)
loss_in_out = criterion(input[:,6:9,:,:], target)
optimizer.zero_grad()
loss.backward()
# nn.utils.clip_grad_norm_(model.parameters(),opt.clip)
optimizer.step()
# if iteration == 0:
print("===> Epoch[{}]({}/{}): Loss: {:.10f}, Loss_in_out: {:.10f}".format(epoch, iteration, len(training_data_loader), loss.data, loss_in_out.data))
def save_checkpoint(model, epoch):
model_out_path = "checkpoint/" + "model_epoch_{}.pth".format(epoch)
state = {"epoch": epoch ,"model": model}
if not os.path.exists("checkpoint/"):
os.makedirs("checkpoint/")
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def data_transformation():
transforms = trans.Compose([
trans.Resize((224,224)),
trans.ColorJitter(hue=.05, saturation=.05),
trans.RandomHorizontalFlip(),
trans.RandomRotation(20, resample=PIL.Image.BILINEAR)
])
return transforms
if __name__ == "__main__":
main()