Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix typo in CH22 #22

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions chapter22.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
"\n",
"接下来看一个斐波那契数列(Fibonacci sequence)的例子:\n",
"\n",
"$0,1,1,2,3,5,8,13,\\cdots,F_{100}=?$,我们要求第一百项的公式,并观察这个数列是如何增长的。可以想象这个数列并不是稳定数列,因此无论如何该矩阵的特征值并不都小于一,这样才能保持增长。而他的增长速度,则有特征值来决定。\n",
"$0,1,1,2,3,5,8,13,\\cdots,F_{100}=?$,我们要求第一百项的公式,并观察这个数列是如何增长的。可以想象这个数列并不是稳定数列,因此无论如何该矩阵的特征值并不都小于一,这样才能保持增长。而他的增长速度,则由特征值来决定。\n",
"\n",
"已知$F_{k+2}=F_{k_1}+F_{k}$,但这不是$u_{k+1}=Au_{k}$的形式,而且我们只要一个方程,而不是方程组,同时这是一个二阶差分方程(就像含有二阶导数的微分方程,希望能够化简为一阶倒数,也就是一阶差分)。\n",
"\n",
Expand All @@ -64,7 +64,7 @@
"\n",
"$F_{100}=c_1\\left(\\frac{1+\\sqrt{5}}{2}\\right)^{100}+c_2\\left(\\frac{1-\\sqrt{5}}{2}\\right)^{100}\\approx c_1\\left(\\frac{1+\\sqrt{5}}{2}\\right)^{100}$,由于$-0.618$在幂增长中趋近于$0$,所以近似的忽略该项,剩下较大的项,我们可以说数量增长的速度大约是$1.618$。可以看出,这种问题与求解$Ax=b$不同,这是一个动态的问题,$A$的幂在不停的增长,而问题的关键就是这些特征值。\n",
"\n",
"* 继续求解特征向量,$A-\\lambda I=\\begin{bmatrix}1-\\lambda&1\\\\1&1-\\lambda\\end{bmatrix}$,因为有根式且矩阵只有二阶,我们直接观察$\\begin{bmatrix}1-\\lambda&1\\\\1&1-\\lambda\\end{bmatrix}\\begin{bmatrix}?\\\\?\\end{bmatrix}=0$,由于$\\lambda^2-\\lambda-1=0$,则其特征向量为$\\begin{bmatrix}\\lambda\\\\1\\end{bmatrix}$,即$x_1=\\begin{bmatrix}\\lambda_1\\\\1\\end{bmatrix}, x_2=\\begin{bmatrix}\\lambda_2\\\\1\\end{bmatrix}$。\n",
"* 继续求解特征向量,$A-\\lambda I=\\begin{bmatrix}1-\\lambda&1\\\\1&-\\lambda\\end{bmatrix}$,因为有根式且矩阵只有二阶,我们直接观察$\\begin{bmatrix}1-\\lambda&1\\\\1&-\\lambda\\end{bmatrix}\\begin{bmatrix}?\\\\?\\end{bmatrix}=0$,由于$\\lambda^2-\\lambda-1=0$,则其特征向量为$\\begin{bmatrix}\\lambda\\\\1\\end{bmatrix}$,即$x_1=\\begin{bmatrix}\\lambda_1\\\\1\\end{bmatrix}, x_2=\\begin{bmatrix}\\lambda_2\\\\1\\end{bmatrix}$。\n",
"\n",
"最后,计算初始项$u_0=\\begin{bmatrix}F_1\\\\F_0\\end{bmatrix}=\\begin{bmatrix}1\\\\0\\end{bmatrix}$,现在将初始项用特征向量表示出来$\\begin{bmatrix}1\\\\0\\end{bmatrix}=c_1x_1+c_2x_2$,计算系数得$c_1=\\frac{\\sqrt{5}}{5}, c_2=-\\frac{\\sqrt{5}}{5}$。\n",
"\n",
Expand Down