-
Notifications
You must be signed in to change notification settings - Fork 167
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add Clickhouse Bench #356
base: main
Are you sure you want to change the base?
add Clickhouse Bench #356
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -22,3 +22,4 @@ environs | |
pydantic<v2 | ||
scikit-learn | ||
pymilvus | ||
clickhouse_connect | ||
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
"""Wrapper around the Clickhouse vector database over VectorDB""" | ||
|
||
import io | ||
import logging | ||
from contextlib import contextmanager | ||
from typing import Any | ||
import clickhouse_connect | ||
import numpy as np | ||
|
||
from ..api import VectorDB, DBCaseConfig | ||
|
||
log = logging.getLogger(__name__) | ||
|
||
class Clickhouse(VectorDB): | ||
"""Use SQLAlchemy instructions""" | ||
def __init__( | ||
self, | ||
dim: int, | ||
db_config: dict, | ||
db_case_config: DBCaseConfig, | ||
collection_name: str = "CkVectorCollection", | ||
drop_old: bool = False, | ||
**kwargs, | ||
): | ||
self.db_config = db_config | ||
self.case_config = db_case_config | ||
self.table_name = collection_name | ||
self.dim = dim | ||
|
||
self._index_name = "pqvector_index" | ||
self._primary_field = "id" | ||
self._vector_field = "embedding" | ||
|
||
# construct basic units | ||
self.conn = clickhouse_connect.get_client( | ||
host=self.db_config["host"], | ||
port=self.db_config["port"], | ||
username=self.db_config["user"], | ||
password=self.db_config["password"], | ||
database=self.db_config["dbname"]) | ||
|
||
if drop_old: | ||
log.info(f"Clickhouse client drop table : {self.table_name}") | ||
self._drop_table() | ||
self._create_table(dim) | ||
|
||
self.conn.close() | ||
self.conn = None | ||
|
||
@contextmanager | ||
def init(self) -> None: | ||
""" | ||
Examples: | ||
>>> with self.init(): | ||
>>> self.insert_embeddings() | ||
>>> self.search_embedding() | ||
""" | ||
|
||
self.conn = clickhouse_connect.get_client( | ||
host=self.db_config["host"], | ||
port=self.db_config["port"], | ||
username=self.db_config["user"], | ||
password=self.db_config["password"], | ||
database=self.db_config["dbname"]) | ||
|
||
try: | ||
yield | ||
finally: | ||
self.conn.close() | ||
self.conn = None | ||
|
||
def _drop_table(self): | ||
assert self.conn is not None, "Connection is not initialized" | ||
|
||
self.conn.command(f'DROP TABLE IF EXISTS {self.db_config["dbname"]}.{self.table_name}') | ||
|
||
def _create_table(self, dim: int): | ||
assert self.conn is not None, "Connection is not initialized" | ||
|
||
try: | ||
# create table | ||
self.conn.command( | ||
f'CREATE TABLE IF NOT EXISTS {self.db_config["dbname"]}.{self.table_name} \ | ||
(id Integer, embedding Array(Float32)) ENGINE = MergeTree() ORDER BY id;' | ||
) | ||
|
||
except Exception as e: | ||
log.warning( | ||
f"Failed to create Clickhouse table: {self.table_name} error: {e}" | ||
) | ||
raise e from None | ||
|
||
def ready_to_load(self): | ||
pass | ||
|
||
def optimize(self): | ||
pass | ||
|
||
def ready_to_search(self): | ||
pass | ||
|
||
def insert_embeddings( | ||
self, | ||
embeddings: list[list[float]], | ||
metadata: list[int], | ||
**kwargs: Any, | ||
) -> (int, Exception): | ||
assert self.conn is not None, "Connection is not initialized" | ||
|
||
try: | ||
items = [] | ||
for i, row in enumerate(metadata): | ||
items.append((metadata[i], np.array(embeddings[i]).tolist())) | ||
|
||
self.conn.insert(self.table_name, items, ['id', 'embedding']) | ||
return len(metadata), None | ||
except Exception as e: | ||
log.warning(f"Failed to insert data into Clickhouse table ({self.table_name}), error: {e}") | ||
return 0, e | ||
|
||
def search_embedding( | ||
self, | ||
query: list[float], | ||
k: int = 100, | ||
filters: dict | None = None, | ||
timeout: int | None = None, | ||
) -> list[int]: | ||
assert self.conn is not None, "Connection is not initialized" | ||
|
||
if filters: | ||
gt = filters.get("id") | ||
filterSql = f'SELECT id,cosineDistance(embedding,{query}) AS score FROM {self.db_config["dbname"]}.{self.table_name} \ | ||
WHERE id > {gt} ORDER BY score LIMIT {k};' | ||
result = self.conn.query(filterSql).result_rows | ||
return [int(row[0]) for row in result] | ||
else: | ||
selectSql = f'SELECT id,cosineDistance(embedding,{query}) AS score FROM {self.db_config["dbname"]}.{self.table_name} \ | ||
ORDER BY score LIMIT {k};' | ||
result = self.conn.query(selectSql).result_rows | ||
Comment on lines
+130
to
+139
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It is not recommended to fix the metric to |
||
return [int(row[0]) for row in result] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
from typing import TypedDict | ||
from pydantic import BaseModel, SecretStr | ||
from ..api import DBConfig, DBCaseConfig, MetricType, IndexType | ||
|
||
class ClickhouseConfig(DBConfig): | ||
user_name: SecretStr = "default" | ||
password: SecretStr | ||
host: str = "127.0.0.1" | ||
port: int = 30193 | ||
db_name: str = "default" | ||
|
||
def to_dict(self) -> dict: | ||
user_str = self.user_name.get_secret_value() | ||
pwd_str = self.password.get_secret_value() | ||
return { | ||
"host": self.host, | ||
"port": self.port, | ||
"dbname": self.db_name, | ||
"user": user_str, | ||
"password": pwd_str | ||
} | ||
Comment on lines
+1
to
+21
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I did not find any code related to |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
need to add it to
pyproject.toml
so that users could use "pip install vectordb-bench[all]" or "pip install vectordb-bench[clickhouse]" to install dependencies from
PYPI
.