Testing the algorithm proposed in the article "LowFER: Low-rank Bilinear Pooling for Link Prediction", ICML 2020 on the Russian-language thesaurus of the WN format - RuWordNet for 2021.
-
Original WN18 data launch with hyperparams tuned by Saadullah Amin:
python main.py --dataset WN18 --num_iterations 30 --batch_size 128 --lr 0.005 --dr 0.995 --edim 200 --rdim 30 --input_dropout 0.2 --hidden_dropout1 0.1 --hidden_dropout2 0.2 --label_smoothing 0.1 --k 10
-
Our RuWordNet-2021 data launch:
python main.py --dataset rwn-2021 --num_iterations 30 --batch_size 128 --lr 0.005 --dr 0.995 --edim 200 --rdim 30 --input_dropout 0.2 --hidden_dropout1 0.1 --hidden_dropout2 0.2 --label_smoothing 0.1 --k 10
Dataset | MRR | Hits@10 | Hits@3 | Hits@1 |
---|---|---|---|---|
Original Data | ||||
WN18 | 0.953 | 0.958 | 0.955 | 0.949 |
FB15k | 0.795 | 0.892 | 0.833 | 0.741 |
WN18RR | 0.470 | 0.526 | 0.482 | 0.443 |
FB15k-237 | 0.358 | 0.544 | 0.394 | 0.266 |
Our Data | ||||
RuWN21* | 0.91 | 0.94 | 0.94 | 0.92 |
*after 30 iterations
The original codebase was implemented in Python 3.6.6. Required packages are:
python 3.6.6
numpy 1.15.1
pytorch 1.0.1
2022, Grandilevskii Aleksei, software engineer, github: @zer0deck, email: [email protected], website: zer0deck.com
2022, Sorokin Mikhail, ML engineer, github: @Mikha1lSorokin, email: [email protected]
-
RuWordNet is licensed as CCANSA 3.0 Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. -
LowFER itself is licenced as MIT License.
This project is provided by LowFER model.
-
@inproceedings{pmlr-v119-amin20a, title ={{L}ow{FER}: Low-rank Bilinear Pooling for Link Prediction}, author = {Amin, Saadullah and Varanasi, Stalin and Dunfield, Katherine Ann and Neumann, G{\"u}nter}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {257--268}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/amin20a/amin20a.pdf}, url = {https://proceedings.mlr.press/v119/amin20a.html} }
-
@inproceedings{dikeoulias-etal-2022-temporal, title = "Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic Representations", author = {Dikeoulias, Ioannis and Amin, Saadullah and Neumann, G{\"u}nter}, booktitle = "Proceedings of the 7th Workshop on Representation Learning for NLP", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.repl4nlp-1.12", doi = "10.18653/v1/2022.repl4nlp-1.12", pages = "111--120", }
-
@inproceedings{balazevic2019tucker, title={TuckER: Tensor Factorization for Knowledge Graph Completion}, author={Bala\v{z}evi\'c, Ivana and Allen, Carl and Hospedales, Timothy M}, booktitle={Empirical Methods in Natural Language Processing}, year={2019} }