Skip to content
forked from suamin/LowFER

LowFER: Low-rank Bilinear Pooling for Link Prediction (ICML 2020)

License

Notifications You must be signed in to change notification settings

zer0deck/LowFER

 
 

Repository files navigation

LowFER.RuWordNet

Testing the algorithm proposed in the article "LowFER: Low-rank Bilinear Pooling for Link Prediction", ICML 2020 on the Russian-language thesaurus of the WN format - RuWordNet for 2021.

Table of content

Launch

  1. Original WN18 data launch with hyperparams tuned by Saadullah Amin:

    python main.py --dataset WN18 --num_iterations 30 --batch_size 128 --lr 0.005 --dr 0.995 --edim 200 --rdim 30 --input_dropout 0.2 --hidden_dropout1 0.1 --hidden_dropout2 0.2 --label_smoothing 0.1 --k 10
  2. Our RuWordNet-2021 data launch:

    python main.py --dataset rwn-2021 --num_iterations 30 --batch_size 128 --lr 0.005 --dr 0.995 --edim 200 --rdim 30 --input_dropout 0.2 --hidden_dropout1 0.1 --hidden_dropout2 0.2 --label_smoothing 0.1 --k 10

Results

Dataset MRR Hits@10 Hits@3 Hits@1
Original Data
WN18 0.953 0.958 0.955 0.949
FB15k 0.795 0.892 0.833 0.741
WN18RR 0.470 0.526 0.482 0.443
FB15k-237 0.358 0.544 0.394 0.266
Our Data
RuWN21* 0.91 0.94 0.94 0.92

*after 30 iterations

Requirements

The original codebase was implemented in Python 3.6.6. Required packages are:

python     3.6.6
numpy      1.15.1
pytorch    1.0.1

Authors

2022, Grandilevskii Aleksei, software engineer, github: @zer0deck, email: [email protected], website: zer0deck.com

2022, Sorokin Mikhail, ML engineer, github: @Mikha1lSorokin, email: [email protected]

Licences

  1. RuWordNet is licensed as CCANSA 3.0 Licence

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

  2. LowFER itself is licenced as MIT License.

Citing

This project is provided by LowFER model.

  1.  @inproceedings{pmlr-v119-amin20a,
       title ={{L}ow{FER}: Low-rank Bilinear Pooling for Link Prediction},
       author = {Amin, Saadullah and Varanasi, Stalin and Dunfield, Katherine Ann and Neumann, G{\"u}nter},
       booktitle = {Proceedings of the 37th International Conference on Machine Learning},
       pages = {257--268},
       year = {2020},
       editor = {III, Hal Daumé and Singh, Aarti},
       volume = {119},
       series = {Proceedings of Machine Learning Research},
       month = {13--18 Jul},
       publisher = {PMLR},
       pdf = {http://proceedings.mlr.press/v119/amin20a/amin20a.pdf},
       url = {https://proceedings.mlr.press/v119/amin20a.html}
     }
  2.  @inproceedings{dikeoulias-etal-2022-temporal,
         title = "Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic Representations",
         author = {Dikeoulias, Ioannis and Amin, Saadullah and Neumann, G{\"u}nter},
         booktitle = "Proceedings of the 7th Workshop on Representation Learning for NLP",
         month = may,
         year = "2022",
         address = "Dublin, Ireland",
         publisher = "Association for Computational Linguistics",
         url = "https://aclanthology.org/2022.repl4nlp-1.12",
         doi = "10.18653/v1/2022.repl4nlp-1.12",
         pages = "111--120",
     }
  3. @inproceedings{balazevic2019tucker,
       title={TuckER: Tensor Factorization for Knowledge Graph Completion},
       author={Bala\v{z}evi\'c, Ivana and Allen, Carl and Hospedales, Timothy M},
       booktitle={Empirical Methods in Natural Language Processing},
       year={2019}
     }

About

LowFER: Low-rank Bilinear Pooling for Link Prediction (ICML 2020)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 81.8%
  • Jupyter Notebook 18.2%