This is an official implementation of the TMLR 2023 paper "Continual Learning by Modeling Intra-Class Variation" (MOCA).
This work is based on the code of DER:
pip install -r requirements.txt
- Use
./utils/main.py
to run experiments. - Use argument
--load_best_args
to use the best hyperparameters from the paper.
- Release code!
- Bash Arguments!
- The code is still dirty and we'll sort it out soon.
- 2D Visualization code and Gradients Analysis code.
For reproducing the results of our MOCA-Gaussian on Cifar-100, run:
python ./utils/main.py --load_best_args --model er --dataset seq-cifar100 --buffer_size 500 --para_scale 1.5 --gamma_loss 1 --norm_add norm_add --method2 gaussian --noise_type noise
For reproducing the results of our MOCA-WAP on Cifar-100, run:
python ./utils/main.py --load_best_args --model er --dataset seq-cifar100 --buffer_size 500 --para_scale 1.5 --gamma_loss 10 --norm_add norm_add --advloss none --target_type new_labels --noise_type adv --inner_iter 1
If you find this code or idea useful, please cite our work:
@article{yu2022continual,
title={Continual Learning by Modeling Intra-Class Variation},
author={Yu, Longhui and Hu, Tianyang and Hong, Lanqing and Liu, Zhen and Weller, Adrian and Liu, Weiyang},
journal={arXiv preprint arXiv:2210.05398},
year={2022}
}
If you have any questions, feel free to contact us through email ([email protected]). Enjoy!