Skip to content
/ Manteia Public

deep learning,NLP,classification,text,bert,distilbert,albert,xlnet,roberta,gpt2

License

Notifications You must be signed in to change notification settings

ym001/Manteia

Repository files navigation

Manteia - proclaim the good word

Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity).

You can install it with pip :

     pip install Manteia

For use with GPU and cuda we recommend the use of Anaconda :

     conda create -n manteia_env python=3.7

     conda activate manteia_env

     conda install pytorch

     pip install manteia

Example of use Classification :

from Manteia.Classification import Classification 
from Manteia.Model import Model 
		
documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.']
labels = ['funny','not funny']
		
model = Model(model_name ='roberta')
cl=Classification(model,documents,labels,process_classif=True)

NoteBook

Example of use Generation :

from Manteia.Generation import Generation 
from Manteia.Dataset import Dataset
from Manteia.Model import *


ds=Dataset('Short_Jokes')

model       = Model(model_name ='gpt2')
text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32)
model.load_type()
model.load_tokenizer()
model.load_class()
model.devices()
model.configuration(text_loader)

gn=Generation(model)

gn.model.fit_generation(text_loader)
output      = model.predict_generation('What did you expect ?')
output_text = decode_text(output,model.tokenizer)
print(output_text)

NoteBook

Documentation Pypi Source

This code is licensed under MIT.

https://www.amazon.fr/ABcédaire-Amoureux-lIntelligence-Artificielle-Mercadier/dp/B0C872FTS3

About

deep learning,NLP,classification,text,bert,distilbert,albert,xlnet,roberta,gpt2

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published