Skip to content

A Python implementation about quadruped locomotion using convex model predictive control (MPC).

License

Notifications You must be signed in to change notification settings

yinghansun/pympc-quadruped

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pympc-quadruped

A Python implementation about quadruped locomotion using convex model predictive control (MPC).

image

Installation

1. Create a Virtual Environment

a. Install virtualenv:

$ sudo apt install python3-virtualenv

or

$ pip install virtualenv

b. Create a virtual environment:

$ cd ${path-to-pympc-quadruped}
$ virtualenv --python /usr/bin/python3.8 pympc-env

2. Install Simulators

a. Mujoco

  • Create a folder named .mujoco in your home directory: $ mkdir ~/.mujoco.
  • Download Mujoco library from https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz. Extract and move it to the .mujoco folder.
  • Add the following to your .bashrc file:
    export LD_LIBRARY_PATH=/home/${your-usr-name}/.mujoco/mujoco210/bin
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia
    export PATH="$LD_LIBRARY_PATH:$PATH"
    export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so
    
    Do not forget to run $ source ~/.bashrc.
  • Test if the installation is successfully finished:
    $ cd ~/.mujoco/mujoco210/bin
    $ ./simulate ../model/humanoid.xml
    

b. Isaac Gym

  • Download Isaac Gym Preview Release from this website.
  • The tutorial for installation is in the ./isaacgym/docs/install.html. I recommand the user to install it in the previous virtual environment.
    $ cd ${path-to-issacgym}/python
    $ source ${path-to-pympc-quadruped}/pympc-env/bin/activate
    (pympc-env)$ pip install -e .
    
  • Then you can trying to run examples in ./isaacgym/python/examples. Note that if you follow the instructions above, you need to run the examples in the virtual environments.
    $ cd ${path-to-isaacgym}/python/examples
    $ source ${path-to-pympc-quadruped}/pympc-env/bin/activate
    (pympc-env)$ python 1080_balls_of_solitude.py
    
  • For troubleshooting, check ./isaacgym/docs/index.html

Note: If you meet the following issue like ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory when running the examples, you can try export LD_LIBRARY_PATH=/path/to/conda/envs/your_env/lib before executing your python script. If you are not using conda, the path shoud be /path/to/libpython/directory.

3. Install Dependences

a) Install Pinocchio

Pinocchio provides the state-of-the-art rigid body kinematics and dynamic algorithms. You could follow this link to install Pinocchio.

b) Install other dependences

$ cd ${path-to-pympc-quadruped}
$ source ${path-to-pympc-quadruped}/pympc-env/bin/activate
(pympc-env)$ pip install --upgrade pip
(pympc-env)$ pip install -r requirements.txt 

Sign Convention

About

A Python implementation about quadruped locomotion using convex model predictive control (MPC).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages