YOLOv4, YOLOv4-tiny Implemented in Tensorflow 2.0. Convert YOLO v4, YOLOv3, YOLO tiny .weights to .pb, .tflite and trt format for tensorflow, tensorflow lite, tensorRT.
Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
- Tensorflow 2.3.0rc0
# Convert darknet weights to tensorflow
## yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4-416 --input_size 416 --model yolov4
## yolov4-tiny
python save_model.py --weights ./data/yolov4-tiny.weights --output ./checkpoints/yolov4-tiny-416 --input_size 416 --model yolov4 --tiny
# Run demo tensorflow
python detect.py --weights ./checkpoints/yolov4-416 --size 416 --model yolov4 --image ./data/kite.jpg
python detect.py --weights ./checkpoints/yolov4-tiny-416 --size 416 --model yolov4 --image ./data/kite.jpg --tiny
If you want to run yolov3 or yolov3-tiny change --model yolov3
in command
# Save tf model for tflite converting
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4-tflite-416 --input_size 416 --model yolov4 --framework tflite
# yolov4
python convert_tflite.py --weights ./checkpoints/yolov4-tflite-416 --output ./checkpoints/yolov4-416.tflite
# yolov4 quantize float16
python convert_tflite.py --weights ./checkpoints/yolov4-tflite-416 --output ./checkpoints/yolov4-416-fp16.tflite --quantize_mode float16
# yolov4 quantize int8 (use fp16 for non quantizable ops, fp32 for input/outputs)
# - You need to download COCO 2017 dataset using `scripts/get_coco_dataset_2017.sh` and change the absolute file paths in data/dataset/val2017.txt, don't use relative paths
python convert_tflite.py --weights ./checkpoints/yolov4-tflite-416 --output ./checkpoints/yolov4-416-int8.tflite --quantize_mode int8 --dataset ./data/dataset/val2017.txt
# yolov4 quantize mixedint (use int8 for weights, int16 for activations, fp16 for non quantizable ops, fp32 for input/outputs)
# https://www.tensorflow.org/lite/performance/post_training_quantization#integer_only_16-bit_activations_with_8-bit_weights_experimental
python convert_tflite.py --weights ./checkpoints/yolov4-tflite-416 --output ./checkpoints/yolov4-416-int8.tflite --quantize_mode mixedint --dataset ./data/dataset/val2017.txt
# Run demo tflite model
python detect.py --weights ./checkpoints/yolov4-416.tflite --size 416 --model yolov4 --image ./data/kite.jpg --framework tflite
Yolov4 and Yolov4-tiny int8 quantization have some issues. I will try to fix that. You can try Yolov3 and Yolov3-tiny int8 quantization
python save_model.py --weights ./data/yolov3.weights --output ./checkpoints/yolov3.tf --input_size 416 --model yolov3
python convert_trt.py --weights ./checkpoints/yolov3.tf --quantize_mode float16 --output ./checkpoints/yolov3-trt-fp16-416
# yolov3-tiny
python save_model.py --weights ./data/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --input_size 416 --tiny
python convert_trt.py --weights ./checkpoints/yolov3-tiny.tf --quantize_mode float16 --output ./checkpoints/yolov3-tiny-trt-fp16-416
# yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4.tf --input_size 416 --model yolov4
python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416
# run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input ./coco/annotations/instances_val2017.json --output val2017.pkl
python coco_annotation.py --coco_path ./coco
cd ..
# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf
Detection | 512x512 | 416x416 | 320x320 |
---|---|---|---|
YoloV3 | 55.43 | 52.32 | |
YoloV4 | 61.96 | 57.33 |
python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights
YoloV4 416 images/s | FP32 | FP16 | INT8 |
---|---|---|---|
Batch size 1 | 55 | 116 | |
Batch size 8 | 70 | 152 |
Detection | 512x512 | 416x416 | 320x320 |
---|---|---|---|
YoloV3 FPS | 40.6 | 49.4 | 61.3 |
YoloV4 FPS | 33.4 | 41.7 | 50.0 |
Detection | 512x512 | 416x416 | 320x320 |
---|---|---|---|
YoloV3 FPS | 10.8 | 12.9 | 17.6 |
YoloV4 FPS | 9.6 | 11.7 | 16.0 |
Detection | 512x512 | 416x416 | 320x320 |
---|---|---|---|
YoloV3 FPS | 27.6 | 32.3 | 45.1 |
YoloV4 FPS | 24.0 | 30.3 | 40.1 |
Detection | 512x512 | 416x416 | 320x320 |
---|---|---|---|
YoloV3 FPS | 20.2 | 24.2 | 31.2 |
YoloV4 FPS | 16.2 | 20.2 | 26.5 |
Detection | 512x512 | 416x416 | 320x320 |
---|---|---|---|
YoloV3 FPS | |||
YoloV4 FPS |
# Prepare your dataset
# If you want to train from scratch:
In config.py set FISRT_STAGE_EPOCHS=0
# Run script:
python train.py
# Transfer learning:
python train.py --weights ./data/yolov4.weights
The training performance is not fully reproduced yet, so I recommended to use Alex's Darknet to train your own data, then convert the .weights to tensorflow or tflite.
- Convert YOLOv4 to TensorRT
- YOLOv4 tflite on android
- YOLOv4 tflite on ios
- Training code
- Update scale xy
- ciou
- Mosaic data augmentation
- Mish activation
- yolov4 tflite version
- yolov4 in8 tflite version for mobile
My project is inspired by these previous fantastic YOLOv3 implementations: