Prioritized Human-In-the-Loop (PHIL) Reinforcement Learning for Behavior Planning of Autonomous Vehicles in CARLA
This repo is the implementation of the following paper:
Prioritized Experience-Based Reinforcement Learning With Human Guidance for Autonomous Driving
Jingda Wu, Zhiyu Huang, Wenhui Huang, Chen Lv
AutoMan Research Lab, Nanyang Technological University
-
Install the CARLA simulator, with referring to https://carla.readthedocs.io/en/latest/start_quickstart/#a-debian-carla-installation
-
Install the dependent package
pip install -r requirements.txt
- Training the RL agent in the left-turn scenario
python train_leftturn.py
--algorithm 0
--human_model
--reward_shaping 0
--seed 123
--maximum_episode 400
--initial_exploration_rate 0.5
--cutoff_exploration_rate 0.05
--exploration_decay_rate 0.99988
--warmup
--warmup_threshold 1e4
--device cuda
--simulator_port 2000
--simulator_render_frequency 12
--joystick_enabled
- Training the RL agent in the congestion scenario
python train_congestion.py
--algorithm 0
--human_model
--human_model_type PI
--reward_shaping 0
--seed 123
--maximum_episode 400
--initial_exploration_rate 0.5
--cutoff_exploration_rate 0.05
--exploration_decay_rate 0.99988
--warmup
--warmup_threshold 1e4
--device cuda
--simulator_port 2000
--simulator_render_frequency 12
--joystick_enabled
The algorithms in this repo allow human subjects to provide guidance for improving RL training performance in the real-time (by joystick or keyboard)
(a-b) Results in the left-turn scenario; (c-d) Results in the congestion scenario.
If you find this repo to be useful in your research, please consider citing our work
@ARTICLE{9793564,
author={Wu, Jingda and Huang, Zhiyu and Huang, Wenhui and Lv, Chen},
journal={IEEE Transactions on Neural Networks and Learning Systems},
title={Prioritized Experience-Based Reinforcement Learning With Human Guidance for Autonomous Driving},
year={2022},
doi={10.1109/TNNLS.2022.3177685}}
This repo is released under GNU GPLv3 License.