lianad JSON-RPC Python client.
Serves as a client to connect to a lianad running instance trough the RPC socket.
You can have a look to the RPC API reference
pip install liana-rpc
pip install git+https://github.com/pythcoiner/liana-rpc
You might have a lianad
running instance on your machine (and so your lianad
need to be connected to a bitcoind
).
If you have a running instance of lianad
, it should be auto-detected.
from liana_rpc.liana_rpc import LianaRPC
liana = LianaRPC()
If you are under Windows/MAC or running several lianad
instances, you'll need to specify the socket path:
from liana_rpc.liana_rpc import LianaRPC
liana = LianaRPC('~/.liana/signet/lianad_rpc')
import json
from liana_rpc.liana_rpc import LianaRPC
liana = LianaRPC()
print(json.dumps(liana.get_info(), indent=2))
output:
{
"block_height": 153381,
"descriptors": {
"main": {
"change_desc": "wsh(or_i(and_v(v:pkh([c6fb74e6/48'/1'/1'/2']tpubDFJBUNcNBTvAZYp5CteCpbCBfs8GhescLJPfTvcH7jugvFAffTr67BjvZ28g2fqt2bkHYTNTwaC95hx6byTFi8kVQa/1/*),older(20)),or_d(multi(2,[c4fb74e6/48'/1'/0'/2']tpubDE4XEBLMec4eRURN3QGNFGJZcvPT7r1AGELL7P5fbiBp2txJCRfAmNHnjCF1YZsbzkQYZKVpTvRGWLbwYGgFHp6Sb8atSWKyzKsv4dUp1vY/1/*,[a5c6b76e/48'/1'/0'/2']tpubDF5861hj6vR3iJr3aPjGJz4rNbqDCRujQ21mczzKT5SiedaQqNVgHC8HT9ceyxvMFRoPMx4P6HAcL3NZrUPhRUbwCyj3TKSa64bAfnE3sLh/1/*),and_v(v:pkh([a5c6b76e/48'/1'/1'/2']tpubDFhfKfRZcoXt9uMAWCEmtbv5sFaZ3o9bUyQ74Gj1UxxS5MHENpBhMXmc6gfkMXoJnDTfso1Gzyb2DpwpPVeJsgGee1qXAAQ1AhBNqFG6Mwt/1/*),older(10)))))#y4kctn23",
"multi_desc": "wsh(or_i(and_v(v:pkh([c6fb74e6/48'/1'/1'/2']tpubDFJBUNcNBTvAZYp5CteCpbCBfs8GhescLJPfTvcH7jugvFAffTr67BjvZ28g2fqt2bkHYTNTwaC95hx6byTFi8kVQa/<0;1>/*),older(20)),or_d(multi(2,[c4fb74e6/48'/1'/0'/2']tpubDE4XEBLMec4eRURN3QGNFGJZcvPT7r1AGELL7P5fbiBp2txJCRfAmNHnjCF1YZsbzkQYZKVpTvRGWLbwYGgFHp6Sb8atSWKyzKsv4dUp1vY/<0;1>/*,[a5c6b76e/48'/1'/0'/2']tpubDF5861hj6vR3iJr3aPjGJz4rNbqDCRujQ21mczzKT5SiedaQqNVgHC8HT9ceyxvMFRoPMx4P6HAcL3NZrUPhRUbwCyj3TKSa64bAfnE3sLh/<0;1>/*),and_v(v:pkh([a5c6b76e/48'/1'/1'/2']tpubDFhfKfRZcoXt9uMAWCEmtbv5sFaZ3o9bUyQ74Gj1UxxS5MHENpBhMXmc6gfkMXoJnDTfso1Gzyb2DpwpPVeJsgGee1qXAAQ1AhBNqFG6Mwt/<0;1>/*),older(10)))))#t4nta0mn",
"receive_desc": "wsh(or_i(and_v(v:pkh([c6fb74e6/48'/1'/1'/2']tpubDFJBUNcNBTvAZYp5CteCpbCBfs8GhescLJPfTvcH7jugvFAffTr67BjvZ28g2fqt2bkHYTNTwaC95hx6byTFi8kVQa/0/*),older(20)),or_d(multi(2,[c4fb74e6/48'/1'/0'/2']tpubDE4XEBLMec4eRURN3QGNFGJZcvPT7r1AGELL7P5fbiBp2txJCRfAmNHnjCF1YZsbzkQYZKVpTvRGWLbwYGgFHp6Sb8atSWKyzKsv4dUp1vY/0/*,[a5c6b76e/48'/1'/0'/2']tpubDF5861hj6vR3iJr3aPjGJz4rNbqDCRujQ21mczzKT5SiedaQqNVgHC8HT9ceyxvMFRoPMx4P6HAcL3NZrUPhRUbwCyj3TKSa64bAfnE3sLh/0/*),and_v(v:pkh([a5c6b76e/48'/1'/1'/2']tpubDFhfKfRZcoXt9uMAWCEmtbv5sFaZ3o9bUyQ74Gj1UxxS5MHENpBhMXmc6gfkMXoJnDTfso1Gzyb2DpwpPVeJsgGee1qXAAQ1AhBNqFG6Mwt/0/*),older(10)))))#kn6q4tpu"
}
},
"network": "signet",
"rescan_progress": null,
"sync": 1.0,
"version": "1.0.0-dev"
}
from liana_rpc.liana_rpc import LianaRPC
liana = LianaRPC()
addr = liana.get_new_address()
print(addr)
output:
tb1qlmdc720pler50uhrf88xdt6chrqtuzrldfkw9727hqdr3e25r4csqc0m9x
from liana_rpc.liana_rpc import LianaRPC
liana = LianaRPC()
coins = liana.list_unspent_coins()
for coin in coins:
print(coin)
output:
{'amount': 10000, 'block_height': 142843, 'outpoint': '4450583c111e4a2974898e4b5068717f852c5b9e1803531ee2d006aedd2e9e39:0', 'spend_info': None}
{'amount': 10000, 'block_height': 142843, 'outpoint': '4450583c111e4a2974898e4b5068717f852c5b9e1803531ee2d006aedd2e9e39:6', 'spend_info': None}
{'amount': 4607905, 'block_height': 144942, 'outpoint': '9b20145363703a3309166aa1af48d7907cc42dd98d49843ffb24ef909d1da108:1', 'spend_info': None}
{'amount': 10000, 'block_height': 142843, 'outpoint': '4450583c111e4a2974898e4b5068717f852c5b9e1803531ee2d006aedd2e9e39:1', 'spend_info': None}
from liana_rpc.liana_rpc import LianaRPC
liana = LianaRPC()
coins = liana.list_unspent_coins()
inputs = [inp['outpoint'] for inp in coins]
outputs = {
'tb1qlmdc720pler50uhrf88xdt6chrqtuzrldfkw9727hqdr3e25r4csqc0m9x': 3000000
}
psbt = liana.create_psbt(inputs, outputs, 20)
print(psbt)
output:
cHNidP8BAP0EAQIAAAAEOZ4u3a4G0OIeUwMYnlsshX9xaFBLjol0KUoeETxYUEQBAAAAAP3///8IoR2dkO8k+z+ESY3ZLcR8kNdIr6FqFgkzOnBjUxQgmwEAAAAA/f///zmeLt2uBtDiHlMDGJ5bLIV/cWhQS46JdClKHhE8WFBEBgAAAAD9////OZ4u3a4G0OIeUwMYnlsshX9xaFBLjol0KUoeETxYUEQAAAAAAP3///8CAAk9AAAAAAAiACD+248p4f5HR/LjSc5mr1i4wL4If2ps4vleuBo45VQdcQGRCQAAAAAAIgAglgOBhY4DGdD0bd+3Fl4qhr1llopKfn0RePXoBY6OGZkAAAAAAAEA/aYCAgAAAAABAQih2zl4DqqOn/fpnS3Z0GcVCijO3ecYjZFNYb6nvHNeAQAAAAD9////CBAnAAAAAAAAIgAgpyees6Pw1bsnmnJZcLZ3YOMgSvHZ9R2yZZeXYIbaP5EQJwAAAAAAACIAIH4+nln+pU9yx7eZ9gJEUn9uu8o6kMapqSe6S2F5HHObECcAAAAAAAAiACCBetCdxX4LYPCyxExdRUZxn8E77KihHsCqy1a5+1SAfRAnAAAAAAAAIgAgevCeG/xnqszgpR5eKguQWi0XFVhlBul3Qx1nDLlET24QJwAAAAAAACIAINAKVJ9nkC2iiEcbLgRSypCKzlDnCIDOUhv6WGS6zbq4ECcAAAAAAAAiACB34g6NZBX1++8CWTBzE+FbPtfv8oHuqtVm7ZwEMwUovBAnAAAAAAAAIgAgA00iaQ9fFohpDbxoO3kBbIup9sGU2BfyoQRhr0/3rKdHBBkAAAAAACIAIFM0Xzw6vqA/P/xaGRjB5SN4nXhGg4/8H+TIcflIUCp4BQBHMEQCICzuhvSBgBQU3kVQH+rq/8bZMfLfytEz5PwEms+lH6erAiBEGjnLH/VlwO5y3jEMRcmPkYERuXjSrI4tnQXwcyiNrQFIMEUCIQCRs50J4SNEm9CalBt6jgLnzBNQdC20dH8zqgttD4i6VQIgAjjNIi8lu5B5taAsrAAF+bb1tBTC+Za2hkn4waBwZpMBAIRjdqkUdWN9dv1lxuW4srhHozYqDaTXCQuIrQEUsmdSIQIQODSocQdLZOVAxUtYyThlLURMevg/QhJno7Dut0DjciECACeEKNbUYxuiZjP2aHzRLcCiYUo698eiDN+fgzy5TuNSrnNkdqkUFMwsyviufgKGgQp3v72mQSNXZR6IrVqyaGgAAAAAAQErECcAAAAAAAAiACB+Pp5Z/qVPcse3mfYCRFJ/brvKOpDGqaknuktheRxzmwEFhGN2qRQmNq5nSkT95iJkh+SROdLRlKMFWYitARSyZ1IhAwa/JV4EZSJhyxjRTKB9O7JFD4uiEVnG9xql2wds/zCaIQMt9A/5nmonxZXRfKoddj7+HvmcLf+9tBrO4hbbcngMiVKuc2R2qRRRTjlN+U4gw24xQUKlpJw/xy6EMoitWrJoaCIGAwa/JV4EZSJhyxjRTKB9O7JFD4uiEVnG9xql2wds/zCaHMT7dOYwAACAAQAAgAAAAIACAACAAAAAAB0AAAAiBgMt9A/5nmonxZXRfKoddj7+HvmcLf+9tBrO4hbbcngMiRylxrduMAAAgAEAAIAAAACAAgAAgAAAAAAdAAAAIgYDbHXQ0SHJJm5dNuATbRVuQ9qhcWoGaAU8ksuG5QbxTiscpca3bjAAAIABAACAAQAAgAIAAIAAAAAAHQAAACIGA/7yrQ7OJ+ScObvf6Cje92OSecCVfwTY7icGVmk0qHTLHMT7dOYwAACAAQAAgAEAAIACAACAAAAAAB0AAAAAAQD9rgsCAAAAAAEJOZ4u3a4G0OIeUwMYnlsshX9xaFBLjol0KUoeETxYUEQHAAAAAP3////cOkRLm5Iy9veczxvLZ73FPyf90A8xhQWtqY9d1Bl0OwEAAAAA/f///5TJQI8KgDG16CcjPQxlMyy30Mlfk346GxJmADb7ny9aAAAAAAD9////kL4kxf3Aw8IH88l9NxC5BEmlmW8ZibWmv4r+cbg+hkoAAAAAAP3///+dpzYxe4zkGp39vM0elb1+Hk2vjH7zq/JDh7VT/X0ipAEAAAAA/f///zmeLt2uBtDiHlMDGJ5bLIV/cWhQS46JdClKHhE8WFBEAgAAAAD9////OZ4u3a4G0OIeUwMYnlsshX9xaFBLjol0KUoeETxYUEQDAAAAAP3///85ni7drgbQ4h5TAxieWyyFf3FoUEuOiXQpSh4RPFhQRAQAAAAA/f///zmeLt2uBtDiHlMDGJ5bLIV/cWhQS46JdClKHhE8WFBEBQAAAAD9////AkBCDwAAAAAAIgAgr7vLX/CEyuA1W1f8Rw7IpnabPpfH4a7Pomagi4p57iWhT0YAAAAAACIAIDgflaN2eEkPJ2f4Wk0uSTGOXw1Frgh4rarWqFuHqqt9BQBHMEQCIGVr7Kzi6xodVE12IYBqQnTTeoLafO+7WqPdp9880AvYAiBPtKDS0NNxDcAlSJEktcPuLbRvlpx0U0R6Snsd+9JZmQFHMEQCIBeYv2tR/3eWIdyJL/2Q+M1A9QywdGKc1bZc9xTa9hh/AiAksksHXWaL2vmGuNqVuKM316APXyvtsPJ4HBSJWPnnEQEAhGN2qRSGhj9EOwdPLdGqSwu0bV+ZuEkkeYitARSyZ1IhAyagxVbluJkCu/kzY3lY7rUGx1ezm5HcerIwL3wrZQSqIQKw/W5vTl/5FmN6IKCKaf3GQt9pYNsBzjSqLDxZeNjOklKuc2R2qRSTXAFbH8rGmMm8a2BUd7+eSxAMtIitWrJoaAUARzBEAiAKzeL8nubJkYUbT8ZueRWRAX41bcDI2JIr7jYUgBveCQIgFLNN4BfnY70ZX40vPEYRioNk9AdLmPggBtwxM2BvD6sBSDBFAiEAojt5/ZblBcIsPDfqt1Ae+t/I/uAwrKE25ZmCAGIs2IoCIH+BRmxe31VoBHzgq0UeigGBw9nePr/IQgm+v8U3EpnfAQCEY3apFPfduAbIJeweWoEsXiOd+LEUmu+WiK0BFLJnUiEC8GZWIgj9p9FgVUy1GJQSge+F7xs8qCyi1BTr3M+7ClMhAkGryXDIrmfO4pRrLMwiiWrNtgQmOpmNwiIZBgtuYft9Uq5zZHapFLvKn3NKx76+fw/iWT8By6c7Zp1NiK1asmhoBQBHMEQCIDNt/sBeqfxEjXWjEfgVUhs7yHQD8uulF3+h/MU9UJzjAiBg2axG+EKTQuvFXALSr1pxv5+YsMzWMSre15rLJaVW7QFHMEQCIF6hSMrKNHNdpUPM4TS+99Li8DXelmhhf2Rc6wNdyoM2AiAqpvott9ZvkYNwaesXemT6kITkGpE3ZDVyGd9FXWzeLgEAhGN2qRR9hXOYBVdkZPxOMwnYIu1Q8bfd04itARSyZ1IhArjxZW4AL+KZm/pjo72xo/FfU44CwHkLuFnqAWmajqXWIQKNGv78L9Tk6a/DFbzPQDGIyObAWS5mo1vsEdthQvCDHVKuc2R2qRTXb5twpZzAb5Bq+R8REGhwBpJggIitWrJoaAUARzBEAiAT2+mh2FG2nOgWk/CXYVDMy+FFFwSxBRn6s9Z/g10wgQIgfwcxTyoQKyshISEwOPL/vZ78yqjD62eemuZMVUJ95bgBRzBEAiB7AihZSC8kMQYOuP5cOaHHIFrxthyYm/ai4I3kfqDIngIgLqjXj/rht/9K5GFQV9TX1Xg2Sari+ZND51pYL+NMUNMBAIRjdqkUjB9THAol693OHV6P57fthoMFIxeIrQEUsmdSIQP1bNXHID2go4rSj3i5iUjA6mDCHUkMXEzibMHAjaDk1iECRWQ5qVEfabxjXUiTSEvW53TQLReO7bry1qLWXGeV1qZSrnNkdqkU0yzx/h/ODsoC+p8cShpVrpYldD+IrVqyaGgFAEcwRAIgOVILc8/iHT6lDpFq97jInx/KQNtSRHPwg2rtmUCnzsgCIFSWicNWU4AryVdrzTc7pKJ/xj0KwmDptMduW6hv8PkXAUcwRAIgOCWs2oAoX6EdDXiMASC3quKh7w32g2qT0o++qr3lYXQCIHBgIv3yJh7JQgON07CVXyPR9WZwZ/tiYLvhl5KhivL5AQCEY3apFBE4yMXfZjyiJjNM9EPRzfq/RbONiK0BFLJnUiEDDSh9u063QoX5JhsyEmom2zgfr/ek8lXoV1/8SNv3RHghAzFKj4/CokD/0BWTCGbyjveJAyQNtdzUYilXIEYLwCDDUq5zZHapFBJp6B3U+B7vVm8iaZVplJ+faZn7iK1asmhoBQBHMEQCIC07mYU8BdeemvItoqydrif2UrsCeQDrQlmrnhajtYi2AiAmvXyDetXE7x2s62H3itAOvRrH46Vvp1dtdzazeDqf3AFHMEQCIQDgjOTkEgHs0kRPaWjueG1aASHARwdsV02kjgruRW7NwQIfXKhON6OVHXVe0R1bX30Zmi6tvrxAA0ld3VjCyaIisQEAhGN2qRTaD60VS9JZBe9DIT2+k6MbUhH8fIitARSyZ1IhAv5u1d9eRN+JOEDJv/xcGhAKrQ8OfOaBiKgPJlRWJpYPIQJ/dD3yVJc/YBnYkuCodekvScpfvWWlIRHmOMNBEHDRzVKuc2R2qRSY0eC2RPLpEC1gRoM2cwBykrb2dYitWrJoaAUARzBEAiBd1D2iU1Ql4sN/0bJlTI4VMYM2qYSXQOpOn/v31G9Q0gIgfOfgDowu/bj3I41WD1pWIYRnMrtKMMU6QW19fibWm3YBRzBEAiBonKnwouMFI/kqDi8j7QbuM8PVN9YHXlO9xYvX79vosgIgeQjAwpU1wh5kRBCCC6or5f8zEtRRgsdkAgI7/aURsiwBAIRjdqkUXYKpnrTq8ZTKoEh8X2kzGKgxqNKIrQEUsmdSIQOld0JmXD5NUw37CKDzbcsETzoPJepsTaD+Xlqzh+3AYyEC14OduDyA49swYl09aeFSnfY86yNbwFc46ZJi7amHWhZSrnNkdqkUAqyPGTt0VIbOOq/KiLgeQmwcnpiIrVqyaGgFAEcwRAIgF0taJlIrhBqBAtERDSTtq7cZOnMe7SL+9skHX9C92NQCIEUEi590U01RP3Mcyknx4NVNWRP0ezAqbRjk240Hx3YwAUgwRQIhAPn8pXlgL4UEtbPKgwSYCGr+6i+3JI1fLq/jxNjMyYsoAiAYIMG7eRl5NfzKeRrF2cOsFuFIOoaJVHQZMvUQosQfKgEAhGN2qRR1zZUktwrr5lUPphKTGsAJtS1yKoitARSyZ1IhA2Nu14q6OyUbUrF8Uae0T6vMRIGysL8GVqGO+dXZcVUlIQIJJDSzyNtDlPRqpl6vILmEHVCo7I2GYue0DhBXkr5cGFKuc2R2qRSw8rKleGzjhRHDc4WESXlaMwmVT4itWrJoaAUARzBEAiAbrWIq9eDaTpl11WQ/0fnAO1rp3HzjqWj2SIzF3Bln1gIgduLv2EsYUP7iYKjksqNUuk1j5sze4XBkaFbHto1XMfABSDBFAiEAjSBdX3I6+V2vLQVCBxtp9OtbyZJUypGonSIqcCufYVMCIEk3/IRQ8GpAMB5vk6DJOecXNzGYgZkjsSNEzdU+1H7AAQCEY3apFPeOU2HDyEfj9KVV+kaCwWQ7Gm3piK0BFLJnUiEC6O5t0pkoWsVihCDaQ7XwnxPpADFVZ/aBLceZzRDoRrghAw9ke8zE4mXVxLOJNb7ASeZLgIx02DE36ch3pawlKjITUq5zZHapFBa0izedtXhQ4+4OGHNkXDFmLU08iK1asmhoAAAAAAEBK6FPRgAAAAAAIgAgOB+Vo3Z4SQ8nZ/haTS5JMY5fDUWuCHitqtaoW4eqq30BBYRjdqkUjS9ulEw03HUxRRfNbDbfNsbHHj+IrQEUsmdSIQP3HSJglgLpTyBM9ierVpSk6Zs/sUC6+yWkHUh4P9kiMyECWuDkiyJnqCBMWeAvLbKV7Q983JIUzxCxTbR81T7bTphSrnNkdqkUDMXfgElcx51Bxkme9WWf+e4VEAaIrVqyaGgiBgJa4OSLImeoIExZ4C8tspXtD3zckhTPELFNtHzVPttOmBylxrduMAAAgAEAAIAAAACAAgAAgAEAAAApAAAAIgYDNs3HpdBLtaZCpyzEkXcNzXudsUfo5ovyoDcr+xHqr60cpca3bjAAAIABAACAAQAAgAIAAIABAAAAKQAAACIGA/cdImCWAulPIEz2J6tWlKTpmz+xQLr7JaQdSHg/2SIzHMT7dOYwAACAAQAAgAAAAIACAACAAQAAACkAAAAiBgP+VZNBEY/LaEYvVh/nayQgLiB2r/1acnLV1CusfhAD6hzE+3TmMAAAgAEAAIABAACAAgAAgAEAAAApAAAAAAEA/aYCAgAAAAABAQih2zl4DqqOn/fpnS3Z0GcVCijO3ecYjZFNYb6nvHNeAQAAAAD9////CBAnAAAAAAAAIgAgpyees6Pw1bsnmnJZcLZ3YOMgSvHZ9R2yZZeXYIbaP5EQJwAAAAAAACIAIH4+nln+pU9yx7eZ9gJEUn9uu8o6kMapqSe6S2F5HHObECcAAAAAAAAiACCBetCdxX4LYPCyxExdRUZxn8E77KihHsCqy1a5+1SAfRAnAAAAAAAAIgAgevCeG/xnqszgpR5eKguQWi0XFVhlBul3Qx1nDLlET24QJwAAAAAAACIAINAKVJ9nkC2iiEcbLgRSypCKzlDnCIDOUhv6WGS6zbq4ECcAAAAAAAAiACB34g6NZBX1++8CWTBzE+FbPtfv8oHuqtVm7ZwEMwUovBAnAAAAAAAAIgAgA00iaQ9fFohpDbxoO3kBbIup9sGU2BfyoQRhr0/3rKdHBBkAAAAAACIAIFM0Xzw6vqA/P/xaGRjB5SN4nXhGg4/8H+TIcflIUCp4BQBHMEQCICzuhvSBgBQU3kVQH+rq/8bZMfLfytEz5PwEms+lH6erAiBEGjnLH/VlwO5y3jEMRcmPkYERuXjSrI4tnQXwcyiNrQFIMEUCIQCRs50J4SNEm9CalBt6jgLnzBNQdC20dH8zqgttD4i6VQIgAjjNIi8lu5B5taAsrAAF+bb1tBTC+Za2hkn4waBwZpMBAIRjdqkUdWN9dv1lxuW4srhHozYqDaTXCQuIrQEUsmdSIQIQODSocQdLZOVAxUtYyThlLURMevg/QhJno7Dut0DjciECACeEKNbUYxuiZjP2aHzRLcCiYUo698eiDN+fgzy5TuNSrnNkdqkUFMwsyviufgKGgQp3v72mQSNXZR6IrVqyaGgAAAAAAQErECcAAAAAAAAiACADTSJpD18WiGkNvGg7eQFsi6n2wZTYF/KhBGGvT/espwEFhGN2qRSzdnFUHb9WG8vtD+vC4M7wz2NNHoitARSyZ1IhAkBMyKBr9v6+rl36t+pXZf7+RsnqpA3LQQ7SbOHDslGjIQJsVNB48Mwum40nt6776Fo+FLbL+6hRO2jLR3P3nTq+I1Kuc2R2qRR82l9xKsvEizWQvOQlNzyXH2JYrYitWrJoaCIGAkBMyKBr9v6+rl36t+pXZf7+RsnqpA3LQQ7SbOHDslGjHMT7dOYwAACAAQAAgAAAAIACAACAAAAAABoAAAAiBgJsVNB48Mwum40nt6776Fo+FLbL+6hRO2jLR3P3nTq+IxylxrduMAAAgAEAAIAAAACAAgAAgAAAAAAaAAAAIgYDxgghL2huduuWJqbbe0BqHR5j+46O6puxakGilqoqmxQcxPt05jAAAIABAACAAQAAgAIAAIAAAAAAGgAAACIGA/RPoUVX+++cXmgY/BPZO5d0ThMByN2NrZ524cr4Muu2HKXGt24wAACAAQAAgAEAAIACAACAAAAAABoAAAAAAQD9pgICAAAAAAEBCKHbOXgOqo6f9+mdLdnQZxUKKM7d5xiNkU1hvqe8c14BAAAAAP3///8IECcAAAAAAAAiACCnJ56zo/DVuyeacllwtndg4yBK8dn1HbJll5dghto/kRAnAAAAAAAAIgAgfj6eWf6lT3LHt5n2AkRSf267yjqQxqmpJ7pLYXkcc5sQJwAAAAAAACIAIIF60J3Ffgtg8LLETF1FRnGfwTvsqKEewKrLVrn7VIB9ECcAAAAAAAAiACB68J4b/GeqzOClHl4qC5BaLRcVWGUG6XdDHWcMuURPbhAnAAAAAAAAIgAg0ApUn2eQLaKIRxsuBFLKkIrOUOcIgM5SG/pYZLrNurgQJwAAAAAAACIAIHfiDo1kFfX77wJZMHMT4Vs+1+/yge6q1WbtnAQzBSi8ECcAAAAAAAAiACADTSJpD18WiGkNvGg7eQFsi6n2wZTYF/KhBGGvT/esp0cEGQAAAAAAIgAgUzRfPDq+oD8//FoZGMHlI3ideEaDj/wf5Mhx+UhQKngFAEcwRAIgLO6G9IGAFBTeRVAf6ur/xtkx8t/K0TPk/ASaz6Ufp6sCIEQaOcsf9WXA7nLeMQxFyY+RgRG5eNKsji2dBfBzKI2tAUgwRQIhAJGznQnhI0Sb0JqUG3qOAufME1B0LbR0fzOqC20PiLpVAiACOM0iLyW7kHm1oCysAAX5tvW0FML5lraGSfjBoHBmkwEAhGN2qRR1Y312/WXG5biyuEejNioNpNcJC4itARSyZ1IhAhA4NKhxB0tk5UDFS1jJOGUtREx6+D9CEmejsO63QONyIQIAJ4Qo1tRjG6JmM/ZofNEtwKJhSjr3x6IM35+DPLlO41Kuc2R2qRQUzCzK+K5+AoaBCne/vaZBI1dlHoitWrJoaAAAAAABASsQJwAAAAAAACIAIKcnnrOj8NW7J5pyWXC2d2DjIErx2fUdsmWXl2CG2j+RAQWEY3apFHxu2U99HtPdC6HfQ1yHudPh0MLNiK0BFLJnUiEC0DC4WI5qGcF1iHuWXTX+VfZOE/mBOi9O2CTDv2v+wfohA3lc7b4JGbNBOHUzP5fNVpT06fyDjTiOeG/ExQU8Mg1rUq5zZHapFEMdFn1Br3QHyx8eWs67Q5B1zhlyiK1asmhoIgYC0DC4WI5qGcF1iHuWXTX+VfZOE/mBOi9O2CTDv2v+wfocxPt05jAAAIABAACAAAAAgAIAAIAAAAAAHgAAACIGAzBiPR7jnlHOBUvSnlwr1tC7TWGg/09WbSsGHwOL8GwlHMT7dOYwAACAAQAAgAEAAIACAACAAAAAAB4AAAAiBgNncbXbF8cXDbxMWtyjiCk6G/qEni2F2Cyky2kZOauVaRylxrduMAAAgAEAAIABAACAAgAAgAAAAAAeAAAAIgYDeVztvgkZs0E4dTM/l81WlPTp/IONOI54b8TFBTwyDWscpca3bjAAAIABAACAAAAAgAIAAIAAAAAAHgAAAAAiAgJGiA54EFyORbD6nR91t3AEoX7FFHhIMya0VFW7xkM96hylxrduMAAAgAEAAIAAAACAAgAAgAAAAAA1AgAAIgICY4eZ13kUONQsGRe75lG5eMH275+dioShPI/sKhha6gocxPt05jAAAIABAACAAAAAgAIAAIAAAAAANQIAACICA4APurNMgvrpzpDhxdi9OtAkC7DSGspZF9zYj16Qu8rzHKXGt24wAACAAQAAgAEAAIACAACAAAAAADUCAAAiAgPhNCWUsy5Nj0fP0dW2XdIgJE5Ny8hhQ6fx5YV47LkhNRzE+3TmMAAAgAEAAIABAACAAgAAgAAAAAA1AgAAACICAjNVLjZpPZtMdzXfFwQ1P8BZxAdtj+qdPhFY2h/MdD6VHMT7dOYwAACAAQAAgAAAAIACAACAAQAAACsBAAAiAgJja6bK6YS1ZgVPJ7yBTETUW/fVUeJUAhXxz9tmngZJChylxrduMAAAgAEAAIAAAACAAgAAgAEAAAArAQAAIgIC806hQkPR7OHpn+AGSFx1IupSk9BOTqjs6MUudqAnJ/gcxPt05jAAAIABAACAAQAAgAIAAIABAAAAKwEAACICA6y8r1SgeukL6tL25h19Av1Px2JJ+S4rkpw/moLCmyhNHKXGt24wAACAAQAAgAEAAIACAACAAQAAACsBAAAA
from liana_rpc.liana_rpc import LianaRPC, psbt_to_txid
liana = LianaRPC()
psbt = 'cHNidP8BANkCAAAABAihHZ2Q7yT7P4RJjdktxHyQ10ivoWoWCTM6cGNTFCCbAQAAAAD9////OZ4u3a4G0OIeUwMYnlsshX9xaFBLjol0KUoeETxYUEQBAAAAAP3///85ni7drgbQ4h5TAxieWyyFf3FoUEuOiXQpSh4RPFhQRAYAAAAA/f///zmeLt2uBtDiHlMDGJ5bLIV/cWhQS46JdClKHhE8WFBEAAAAAAD9////AV2dRgAAAAAAIgAgeypGlyQJmDjLrAkdM/fsNPDtOSJ1dZHpKLmqEu5rQ4sAAAAAAAEA/a4LAgAAAAABCTmeLt2uBtDiHlMDGJ5bLIV/cWhQS46JdClKHhE8WFBEBwAAAAD9////3DpES5uSMvb3nM8by2e9xT8n/dAPMYUFramPXdQZdDsBAAAAAP3///+UyUCPCoAxtegnIz0MZTMst9DJX5N+OhsSZgA2+58vWgAAAAAA/f///5C+JMX9wMPCB/PJfTcQuQRJpZlvGYm1pr+K/nG4PoZKAAAAAAD9////nac2MXuM5Bqd/bzNHpW9fh5Nr4x+86vyQ4e1U/19IqQBAAAAAP3///85ni7drgbQ4h5TAxieWyyFf3FoUEuOiXQpSh4RPFhQRAIAAAAA/f///zmeLt2uBtDiHlMDGJ5bLIV/cWhQS46JdClKHhE8WFBEAwAAAAD9////OZ4u3a4G0OIeUwMYnlsshX9xaFBLjol0KUoeETxYUEQEAAAAAP3///85ni7drgbQ4h5TAxieWyyFf3FoUEuOiXQpSh4RPFhQRAUAAAAA/f///wJAQg8AAAAAACIAIK+7y1/whMrgNVtX/EcOyKZ2mz6Xx+Guz6JmoIuKee4loU9GAAAAAAAiACA4H5WjdnhJDydn+FpNLkkxjl8NRa4IeK2q1qhbh6qrfQUARzBEAiBla+ys4usaHVRNdiGAakJ003qC2nzvu1qj3affPNAL2AIgT7Sg0tDTcQ3AJUiRJLXD7i20b5acdFNEekp7HfvSWZkBRzBEAiAXmL9rUf93liHciS/9kPjNQPUMsHRinNW2XPcU2vYYfwIgJLJLB11mi9r5hrjalbijN9egD18r7bDyeBwUiVj55xEBAIRjdqkUhoY/RDsHTy3RqksLtG1fmbhJJHmIrQEUsmdSIQMmoMVW5biZArv5M2N5WO61BsdXs5uR3HqyMC98K2UEqiECsP1ub05f+RZjeiCgimn9xkLfaWDbAc40qiw8WXjYzpJSrnNkdqkUk1wBWx/KxpjJvGtgVHe/nksQDLSIrVqyaGgFAEcwRAIgCs3i/J7myZGFG0/GbnkVkQF+NW3AyNiSK+42FIAb3gkCIBSzTeAX52O9GV+NLzxGEYqDZPQHS5j4IAbcMTNgbw+rAUgwRQIhAKI7ef2W5QXCLDw36rdQHvrfyP7gMKyhNuWZggBiLNiKAiB/gUZsXt9VaAR84KtFHooBgcPZ3j6/yEIJvr/FNxKZ3wEAhGN2qRT33bgGyCXsHlqBLF4jnfixFJrvloitARSyZ1IhAvBmViII/afRYFVMtRiUEoHvhe8bPKgsotQU69zPuwpTIQJBq8lwyK5nzuKUayzMIolqzbYEJjqZjcIiGQYLbmH7fVKuc2R2qRS7yp9zSse+vn8P4lk/AcunO2adTYitWrJoaAUARzBEAiAzbf7AXqn8RI11oxH4FVIbO8h0A/LrpRd/ofzFPVCc4wIgYNmsRvhCk0LrxVwC0q9acb+fmLDM1jEq3teayyWlVu0BRzBEAiBeoUjKyjRzXaVDzOE0vvfS4vA13pZoYX9kXOsDXcqDNgIgKqb6LbfWb5GDcGnrF3pk+pCE5BqRN2Q1chnfRV1s3i4BAIRjdqkUfYVzmAVXZGT8TjMJ2CLtUPG33dOIrQEUsmdSIQK48WVuAC/imZv6Y6O9saPxX1OOAsB5C7hZ6gFpmo6l1iECjRr+/C/U5OmvwxW8z0AxiMjmwFkuZqNb7BHbYULwgx1SrnNkdqkU12+bcKWcwG+QavkfERBocAaSYICIrVqyaGgFAEcwRAIgE9vpodhRtpzoFpPwl2FQzMvhRRcEsQUZ+rPWf4NdMIECIH8HMU8qECsrISEhMDjy/72e/Mqow+tnnprmTFVCfeW4AUcwRAIgewIoWUgvJDEGDrj+XDmhxyBa8bYcmJv2ouCN5H6gyJ4CIC6o14/64bf/SuRhUFfU19V4Nkmq4vmTQ+daWC/jTFDTAQCEY3apFIwfUxwKJevdzh1ej+e37YaDBSMXiK0BFLJnUiED9WzVxyA9oKOK0o94uYlIwOpgwh1JDFxM4mzBwI2g5NYhAkVkOalRH2m8Y11Ik0hL1ud00C0Xju268tai1lxnldamUq5zZHapFNMs8f4fzg7KAvqfHEoaVa6WJXQ/iK1asmhoBQBHMEQCIDlSC3PP4h0+pQ6Rave4yJ8fykDbUkRz8INq7ZlAp87IAiBUlonDVlOAK8lXa803O6Sif8Y9CsJg6bTHbluob/D5FwFHMEQCIDglrNqAKF+hHQ14jAEgt6rioe8N9oNqk9KPvqq95WF0AiBwYCL98iYeyUIDjdOwlV8j0fVmcGf7YmC74ZeSoYry+QEAhGN2qRQROMjF32Y8oiYzTPRD0c36v0WzjYitARSyZ1IhAw0ofbtOt0KF+SYbMhJqJts4H6/3pPJV6Fdf/Ejb90R4IQMxSo+PwqJA/9AVkwhm8o73iQMkDbXc1GIpVyBGC8Agw1Kuc2R2qRQSaegd1Pge71ZvImmVaZSfn2mZ+4itWrJoaAUARzBEAiAtO5mFPAXXnpryLaKsna4n9lK7AnkA60JZq54Wo7WItgIgJr18g3rVxO8drOth94rQDr0ax+Olb6dXbXc2s3g6n9wBRzBEAiEA4Izk5BIB7NJET2lo7nhtWgEhwEcHbFdNpI4K7kVuzcECH1yoTjejlR11XtEdW199GZourb68QANJXd1YwsmiIrEBAIRjdqkU2g+tFUvSWQXvQyE9vpOjG1IR/HyIrQEUsmdSIQL+btXfXkTfiThAyb/8XBoQCq0PDnzmgYioDyZUViaWDyECf3Q98lSXP2AZ2JLgqHXpL0nKX71lpSER5jjDQRBw0c1SrnNkdqkUmNHgtkTy6RAtYEaDNnMAcpK29nWIrVqyaGgFAEcwRAIgXdQ9olNUJeLDf9GyZUyOFTGDNqmEl0DqTp/799RvUNICIHzn4A6MLv249yONVg9aViGEZzK7SjDFOkFtfX4m1pt2AUcwRAIgaJyp8KLjBSP5Kg4vI+0G7jPD1TfWB15TvcWL1+/b6LICIHkIwMKVNcIeZEQQgguqK+X/MxLUUYLHZAICO/2lEbIsAQCEY3apFF2CqZ606vGUyqBIfF9pMxioMajSiK0BFLJnUiEDpXdCZlw+TVMN+wig823LBE86DyXqbE2g/l5as4ftwGMhAteDnbg8gOPbMGJdPWnhUp32POsjW8BXOOmSYu2ph1oWUq5zZHapFAKsjxk7dFSGzjqvyoi4HkJsHJ6YiK1asmhoBQBHMEQCIBdLWiZSK4QagQLREQ0k7au3GTpzHu0i/vbJB1/QvdjUAiBFBIufdFNNUT9zHMpJ8eDVTVkT9HswKm0Y5NuNB8d2MAFIMEUCIQD5/KV5YC+FBLWzyoMEmAhq/uovtySNXy6v48TYzMmLKAIgGCDBu3kZeTX8ynkaxdnDrBbhSDqGiVR0GTL1EKLEHyoBAIRjdqkUdc2VJLcK6+ZVD6YSkxrACbUtciqIrQEUsmdSIQNjbteKujslG1KxfFGntE+rzESBsrC/BlahjvnV2XFVJSECCSQ0s8jbQ5T0aqZeryC5hB1QqOyNhmLntA4QV5K+XBhSrnNkdqkUsPKypXhs44URw3OFhEl5WjMJlU+IrVqyaGgFAEcwRAIgG61iKvXg2k6ZddVkP9H5wDta6dx846lo9kiMxdwZZ9YCIHbi79hLGFD+4mCo5LKjVLpNY+bM3uFwZGhWx7aNVzHwAUgwRQIhAI0gXV9yOvldry0FQgcbafTrW8mSVMqRqJ0iKnArn2FTAiBJN/yEUPBqQDAeb5OgyTnnFzcxmIGZI7EjRM3VPtR+wAEAhGN2qRT3jlNhw8hH4/SlVfpGgsFkOxpt6YitARSyZ1IhAujubdKZKFrFYoQg2kO18J8T6QAxVWf2gS3Hmc0Q6Ea4IQMPZHvMxOJl1cSziTW+wEnmS4CMdNgxN+nId6WsJSoyE1Kuc2R2qRQWtIs3nbV4UOPuDhhzZFwxZi1NPIitWrJoaAAAAAABASuhT0YAAAAAACIAIDgflaN2eEkPJ2f4Wk0uSTGOXw1Frgh4rarWqFuHqqt9IgICWuDkiyJnqCBMWeAvLbKV7Q983JIUzxCxTbR81T7bTphIMEUCIQDRGTm3mtg34lgjM/MqqBrxgMkrtmV1V0TJBlQyH8iyKwIgFHje5IvXCqFBmlE5PAW97t+Klj27MaZ6+wWQ9TVH0B0BIgIDNs3HpdBLtaZCpyzEkXcNzXudsUfo5ovyoDcr+xHqr61HMEQCIGY9V8ALzr7TQvXWrXHXm4X2g9JABDW0Z5SSTP5Nsu8UAiBJOBSlJv/I/sfzIXVQC8a5Au2zN1/k8irkGWiu9ClDnwEiAgP3HSJglgLpTyBM9ierVpSk6Zs/sUC6+yWkHUh4P9kiM0cwRAIgNPykOaenTlVW/P0UbSdE87hR27VOqMgoID2TermGEj8CICCLw1miP15EuBdoLGSXsEVW5kkkpmb/sSPSCkEeAxWjASICA/5Vk0ERj8toRi9WH+drJCAuIHav/VpyctXUK6x+EAPqRzBEAiBamfKA6ByDK/nYtHaiYqhy7Kn1GW6CyK5E9dpCXkJc6wIgWEwDj6xhBzR22vBz62n978cO5wmHvGM8/cr7TdM7Zz8BAQWEY3apFI0vbpRMNNx1MUUXzWw23zbGxx4/iK0BFLJnUiED9x0iYJYC6U8gTPYnq1aUpOmbP7FAuvslpB1IeD/ZIjMhAlrg5IsiZ6ggTFngLy2yle0PfNySFM8QsU20fNU+206YUq5zZHapFAzF34BJXMedQcZJnvVln/nuFRAGiK1asmhoIgYCWuDkiyJnqCBMWeAvLbKV7Q983JIUzxCxTbR81T7bTpgcpca3bjAAAIABAACAAAAAgAIAAIABAAAAKQAAACIGAzbNx6XQS7WmQqcsxJF3Dc17nbFH6OaL8qA3K/sR6q+tHKXGt24wAACAAQAAgAEAAIACAACAAQAAACkAAAAiBgP3HSJglgLpTyBM9ierVpSk6Zs/sUC6+yWkHUh4P9kiMxzE+3TmMAAAgAEAAIAAAACAAgAAgAEAAAApAAAAIgYD/lWTQRGPy2hGL1Yf52skIC4gdq/9WnJy1dQrrH4QA+ocxPt05jAAAIABAACAAQAAgAIAAIABAAAAKQAAAAABAP2mAgIAAAAAAQEIods5eA6qjp/36Z0t2dBnFQoozt3nGI2RTWG+p7xzXgEAAAAA/f///wgQJwAAAAAAACIAIKcnnrOj8NW7J5pyWXC2d2DjIErx2fUdsmWXl2CG2j+RECcAAAAAAAAiACB+Pp5Z/qVPcse3mfYCRFJ/brvKOpDGqaknuktheRxzmxAnAAAAAAAAIgAggXrQncV+C2DwssRMXUVGcZ/BO+yooR7AqstWuftUgH0QJwAAAAAAACIAIHrwnhv8Z6rM4KUeXioLkFotFxVYZQbpd0MdZwy5RE9uECcAAAAAAAAiACDQClSfZ5AtoohHGy4EUsqQis5Q5wiAzlIb+lhkus26uBAnAAAAAAAAIgAgd+IOjWQV9fvvAlkwcxPhWz7X7/KB7qrVZu2cBDMFKLwQJwAAAAAAACIAIANNImkPXxaIaQ28aDt5AWyLqfbBlNgX8qEEYa9P96ynRwQZAAAAAAAiACBTNF88Or6gPz/8WhkYweUjeJ14RoOP/B/kyHH5SFAqeAUARzBEAiAs7ob0gYAUFN5FUB/q6v/G2THy38rRM+T8BJrPpR+nqwIgRBo5yx/1ZcDuct4xDEXJj5GBEbl40qyOLZ0F8HMoja0BSDBFAiEAkbOdCeEjRJvQmpQbeo4C58wTUHQttHR/M6oLbQ+IulUCIAI4zSIvJbuQebWgLKwABfm29bQUwvmWtoZJ+MGgcGaTAQCEY3apFHVjfXb9ZcbluLK4R6M2Kg2k1wkLiK0BFLJnUiECEDg0qHEHS2TlQMVLWMk4ZS1ETHr4P0ISZ6Ow7rdA43IhAgAnhCjW1GMbomYz9mh80S3AomFKOvfHogzfn4M8uU7jUq5zZHapFBTMLMr4rn4ChoEKd7+9pkEjV2UeiK1asmhoAAAAAAEBKxAnAAAAAAAAIgAgfj6eWf6lT3LHt5n2AkRSf267yjqQxqmpJ7pLYXkcc5siAgMGvyVeBGUiYcsY0UygfTuyRQ+LohFZxvcapdsHbP8wmkcwRAIgXyqYpvCiEGKEHeZzCrsBheNim6VblYU+51MShrlwyIcCIC/HJHA3048G93iXrEWISanCzvWSSRZzlNrOuUe7b51fASICAy30D/meaifFldF8qh12Pv4e+Zwt/720Gs7iFttyeAyJSDBFAiEAhjdyl5n5NjEZjqjRmzWX1XAOw1/B2WEA8Jk99A+3u+sCIAX4KnPai3OGw8GNUd/clwbo0AJXDKcZNVfDddi8PonfASICA2x10NEhySZuXTbgE20VbkPaoXFqBmgFPJLLhuUG8U4rRzBEAiBWH+xQDAhFnrg7KP+ZjqtE04v2chDw4lKm6elP4BlfWgIgNWqcsoinrLBsOKmCrW7wwYRGTRUfpFDevEp/ua7dzAoBIgID/vKtDs4n5Jw5u9/oKN73Y5J5wJV/BNjuJwZWaTSodMtHMEQCIFPq3+qDO76P7pL+H4h/tqiBAmec1ctLndWL/bRbQVkdAiAzcoTAXUpjvX+Psblfd/ujh+NtRygetFgtzf7pWzzTxQEBBYRjdqkUJjauZ0pE/eYiZIfkkTnS0ZSjBVmIrQEUsmdSIQMGvyVeBGUiYcsY0UygfTuyRQ+LohFZxvcapdsHbP8wmiEDLfQP+Z5qJ8WV0XyqHXY+/h75nC3/vbQazuIW23J4DIlSrnNkdqkUUU45TflOIMNuMUFCpaScP8cuhDKIrVqyaGgiBgMGvyVeBGUiYcsY0UygfTuyRQ+LohFZxvcapdsHbP8wmhzE+3TmMAAAgAEAAIAAAACAAgAAgAAAAAAdAAAAIgYDLfQP+Z5qJ8WV0XyqHXY+/h75nC3/vbQazuIW23J4DIkcpca3bjAAAIABAACAAAAAgAIAAIAAAAAAHQAAACIGA2x10NEhySZuXTbgE20VbkPaoXFqBmgFPJLLhuUG8U4rHKXGt24wAACAAQAAgAEAAIACAACAAAAAAB0AAAAiBgP+8q0OzifknDm73+go3vdjknnAlX8E2O4nBlZpNKh0yxzE+3TmMAAAgAEAAIABAACAAgAAgAAAAAAdAAAAAAEA/aYCAgAAAAABAQih2zl4DqqOn/fpnS3Z0GcVCijO3ecYjZFNYb6nvHNeAQAAAAD9////CBAnAAAAAAAAIgAgpyees6Pw1bsnmnJZcLZ3YOMgSvHZ9R2yZZeXYIbaP5EQJwAAAAAAACIAIH4+nln+pU9yx7eZ9gJEUn9uu8o6kMapqSe6S2F5HHObECcAAAAAAAAiACCBetCdxX4LYPCyxExdRUZxn8E77KihHsCqy1a5+1SAfRAnAAAAAAAAIgAgevCeG/xnqszgpR5eKguQWi0XFVhlBul3Qx1nDLlET24QJwAAAAAAACIAINAKVJ9nkC2iiEcbLgRSypCKzlDnCIDOUhv6WGS6zbq4ECcAAAAAAAAiACB34g6NZBX1++8CWTBzE+FbPtfv8oHuqtVm7ZwEMwUovBAnAAAAAAAAIgAgA00iaQ9fFohpDbxoO3kBbIup9sGU2BfyoQRhr0/3rKdHBBkAAAAAACIAIFM0Xzw6vqA/P/xaGRjB5SN4nXhGg4/8H+TIcflIUCp4BQBHMEQCICzuhvSBgBQU3kVQH+rq/8bZMfLfytEz5PwEms+lH6erAiBEGjnLH/VlwO5y3jEMRcmPkYERuXjSrI4tnQXwcyiNrQFIMEUCIQCRs50J4SNEm9CalBt6jgLnzBNQdC20dH8zqgttD4i6VQIgAjjNIi8lu5B5taAsrAAF+bb1tBTC+Za2hkn4waBwZpMBAIRjdqkUdWN9dv1lxuW4srhHozYqDaTXCQuIrQEUsmdSIQIQODSocQdLZOVAxUtYyThlLURMevg/QhJno7Dut0DjciECACeEKNbUYxuiZjP2aHzRLcCiYUo698eiDN+fgzy5TuNSrnNkdqkUFMwsyviufgKGgQp3v72mQSNXZR6IrVqyaGgAAAAAAQErECcAAAAAAAAiACADTSJpD18WiGkNvGg7eQFsi6n2wZTYF/KhBGGvT/espyICAkBMyKBr9v6+rl36t+pXZf7+RsnqpA3LQQ7SbOHDslGjRzBEAiA93sI33AoofMyhDPrzQQknJTATuVNaeGEBvzjfh81/NAIgIQjbbPrq22ldC8c1SpWb3lrVt6l8JiNqtdGw3ej+8Y8BIgICbFTQePDMLpuNJ7eu++haPhS2y/uoUTtoy0dz9506viNIMEUCIQDozPAJVCpzoVXwV+pyb6n+ZYW7bNLFquAiwQyJDjAvLAIgc6Vhd9l5hDQdkktcudHHHcyvL9BgDommyVuZevvkfOABIgIDxgghL2huduuWJqbbe0BqHR5j+46O6puxakGilqoqmxRHMEQCIBtfsBjkVVv43vSO29wdynElMUa3sojDAkxLO1ASIiTJAiB9JU2rzcxmAEbXY9qBQBtl1koTlX2eFcScWIl3HuyLfwEiAgP0T6FFV/vvnF5oGPwT2TuXdE4TAcjdja2eduHK+DLrtkgwRQIhAKSBOUpepwj3vJCdJKZ32Fhb+WCeqYcZSbg8k7lKrZFhAiAFAFpoKy3dpvZh4vsWZFC6FKZXxh3DBiFeOV2QQaaIRQEBBYRjdqkUs3ZxVB2/VhvL7Q/rwuDO8M9jTR6IrQEUsmdSIQJATMiga/b+vq5d+rfqV2X+/kbJ6qQNy0EO0mzhw7JRoyECbFTQePDMLpuNJ7eu++haPhS2y/uoUTtoy0dz9506viNSrnNkdqkUfNpfcSrLxIs1kLzkJTc8lx9iWK2IrVqyaGgiBgJATMiga/b+vq5d+rfqV2X+/kbJ6qQNy0EO0mzhw7JRoxzE+3TmMAAAgAEAAIAAAACAAgAAgAAAAAAaAAAAIgYCbFTQePDMLpuNJ7eu++haPhS2y/uoUTtoy0dz9506viMcpca3bjAAAIABAACAAAAAgAIAAIAAAAAAGgAAACIGA8YIIS9obnbrliam23tAah0eY/uOjuqbsWpBopaqKpsUHMT7dOYwAACAAQAAgAEAAIACAACAAAAAABoAAAAiBgP0T6FFV/vvnF5oGPwT2TuXdE4TAcjdja2eduHK+DLrthylxrduMAAAgAEAAIABAACAAgAAgAAAAAAaAAAAAAEA/aYCAgAAAAABAQih2zl4DqqOn/fpnS3Z0GcVCijO3ecYjZFNYb6nvHNeAQAAAAD9////CBAnAAAAAAAAIgAgpyees6Pw1bsnmnJZcLZ3YOMgSvHZ9R2yZZeXYIbaP5EQJwAAAAAAACIAIH4+nln+pU9yx7eZ9gJEUn9uu8o6kMapqSe6S2F5HHObECcAAAAAAAAiACCBetCdxX4LYPCyxExdRUZxn8E77KihHsCqy1a5+1SAfRAnAAAAAAAAIgAgevCeG/xnqszgpR5eKguQWi0XFVhlBul3Qx1nDLlET24QJwAAAAAAACIAINAKVJ9nkC2iiEcbLgRSypCKzlDnCIDOUhv6WGS6zbq4ECcAAAAAAAAiACB34g6NZBX1++8CWTBzE+FbPtfv8oHuqtVm7ZwEMwUovBAnAAAAAAAAIgAgA00iaQ9fFohpDbxoO3kBbIup9sGU2BfyoQRhr0/3rKdHBBkAAAAAACIAIFM0Xzw6vqA/P/xaGRjB5SN4nXhGg4/8H+TIcflIUCp4BQBHMEQCICzuhvSBgBQU3kVQH+rq/8bZMfLfytEz5PwEms+lH6erAiBEGjnLH/VlwO5y3jEMRcmPkYERuXjSrI4tnQXwcyiNrQFIMEUCIQCRs50J4SNEm9CalBt6jgLnzBNQdC20dH8zqgttD4i6VQIgAjjNIi8lu5B5taAsrAAF+bb1tBTC+Za2hkn4waBwZpMBAIRjdqkUdWN9dv1lxuW4srhHozYqDaTXCQuIrQEUsmdSIQIQODSocQdLZOVAxUtYyThlLURMevg/QhJno7Dut0DjciECACeEKNbUYxuiZjP2aHzRLcCiYUo698eiDN+fgzy5TuNSrnNkdqkUFMwsyviufgKGgQp3v72mQSNXZR6IrVqyaGgAAAAAAQErECcAAAAAAAAiACCnJ56zo/DVuyeacllwtndg4yBK8dn1HbJll5dghto/kSICAtAwuFiOahnBdYh7ll01/lX2ThP5gTovTtgkw79r/sH6RzBEAiAu6+ShoJtGJLP+72871bs46QfxcwA8a/y5hkSIuHufvwIgAI9RNJYxFZ31lwj1XhpF10Oh09KMn+HbA4LcXnRB7jsBIgIDMGI9HuOeUc4FS9KeXCvW0LtNYaD/T1ZtKwYfA4vwbCVHMEQCIGSB/VQiLUfSsEvCZ5Ier0gZIBC5NMCE2zXdhCmeOf1FAiAG65yMRRHJLEA0KGMXqcrVBVhp5ZBNWFzI8HT/H2gjjAEiAgNncbXbF8cXDbxMWtyjiCk6G/qEni2F2Cyky2kZOauVaUcwRAIgfRB55u7dWSY36uEeL+T6oe+OEi4iFdBZ3oQpLKxhoZ8CIHCUteL0rLL2371BBcMicZGD2o8oSuVxdtlcgvBtKZBCASICA3lc7b4JGbNBOHUzP5fNVpT06fyDjTiOeG/ExQU8Mg1rSDBFAiEAysDX0/RZYZ1O9h9MMVAlqzBSuizkuQF2PFEFrMsw0noCID5qQlL6Fw98hj8oesQCDSILPjxYXDhMfJ3vG8c5+N4UAQEFhGN2qRR8btlPfR7T3Quh30Nch7nT4dDCzYitARSyZ1IhAtAwuFiOahnBdYh7ll01/lX2ThP5gTovTtgkw79r/sH6IQN5XO2+CRmzQTh1Mz+XzVaU9On8g404jnhvxMUFPDINa1Kuc2R2qRRDHRZ9Qa90B8sfHlrOu0OQdc4ZcoitWrJoaCIGAtAwuFiOahnBdYh7ll01/lX2ThP5gTovTtgkw79r/sH6HMT7dOYwAACAAQAAgAAAAIACAACAAAAAAB4AAAAiBgMwYj0e455RzgVL0p5cK9bQu01hoP9PVm0rBh8Di/BsJRzE+3TmMAAAgAEAAIABAACAAgAAgAAAAAAeAAAAIgYDZ3G12xfHFw28TFrco4gpOhv6hJ4thdgspMtpGTmrlWkcpca3bjAAAIABAACAAQAAgAIAAIAAAAAAHgAAACIGA3lc7b4JGbNBOHUzP5fNVpT06fyDjTiOeG/ExQU8Mg1rHKXGt24wAACAAQAAgAAAAIACAACAAAAAAB4AAAAAIgIDIXQnvlf0EhQxO3QYOMS47D/r8aBJuRmrEl/TCjz42s4cpca3bjAAAIABAACAAQAAgAIAAIABAAAALAEAACICA3V53uZ4UYV0U/nMWHIkpmy6xrZx2qzzFbiM4PupZOefHMT7dOYwAACAAQAAgAAAAIACAACAAQAAACwBAAAiAgOIXOw0BCMUinmyUthfHT84BMhaZ/CcRJqTKWPgMTqU3xylxrduMAAAgAEAAIAAAACAAgAAgAEAAAAsAQAAIgID5atxWmwgFGigHxd0Vx1LAeOna3gud7j9CfiID40Jp20cxPt05jAAAIABAACAAQAAgAIAAIABAAAALAEAAAA='
print(liana.upate_psbt(psbt))
txid = psbt_to_txid(psbt)
ret = liana.broadcast_psbt(txid)
if 'ok' in ret.keys():
print(liana.del_psbt(txid))
else:
print('Cannot broadcast!')
output:
{'ok': True}
{'ok': True}