This file mainly record the hand/human pose estimation from website and paper
手势识别的文献综述:
缺点: 初始化特别复杂而且模型的方法容易陷入局部最优
缺点:应对噪声的方法不太好
Human Pose Estimation categories:
- Bottom-up approach **先检测出基本单元,像limbs 和 joints, 然后再组装成人 **此方法的优点是,计算量不随场景的人数而改变
- Top-down approach **先检测出人,然后运用single person human pose estimation **该方法的优点是,思路直观,易于理解,容易被大多数人接受
The goal of this week is to scan all the paper on the awesome website.
Modifiled the Preview network to study the usage of pytorch
- To observer the loss decrease using the simple network such as lenet and so on
original epoches 20
Mean-error(mm): 21.0996508109 Max-error(mm): 152.71031124 Std-error(mm): 10.7448302578 MD-score(20mm): 0.0253635482307 MD-score(30mm): 0.0719259977379 MD-score(40mm): 0.14263208919 MD-score(50mm): 0.228877847794 MD-score(60mm): 0.316484892551 MD-score(70mm): 0.39464026037 MD-score(80mm): 0.461510845856 Joint-Mean-error(mm): [28.70244424243763, 17.373510875388313, 28.265029624836217, 13.734350648215912, 31.387715146397976, 16.562653388735622, 26.977958552614126, 16.65783501106259, 27.719118411695618, 23.21289470653092, 19.422062182609654, 17.936125989122583, 20.008555841561456, 7.434856731733034] Joint-Max-error(mm): [114.89629505232013, 84.71179620519501, 114.30683559740977, 77.08168949654969, 108.95544015557327, 68.3730934712988, 105.6775672140089, 59.75482758522437, 152.71031123987393, 129.05997797687724, 93.80259705719037, 71.97151292016072, 69.53365474106383, 19.63168145248244] JSAuC(20mm): 0.247800100409 JSAuC(30mm): 0.389918749856 JSAuC(40mm): 0.501230654041 JSAuC(50mm): 0.584535696974 JSAuC(60mm): 0.646937538952 JSAuC(70mm): 0.694451190559 JSAuC(80mm): 0.731339913268
笔记本电脑选购推荐:
-
Macbook, Macbook Air 2018 (if the display is retina), Macbook Pro 13'
-
Thinkpad X1 Carbon 2018
-
Microsoft Surface Book 2
-
Dell Xps13