Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implementation of SVM, Decision Tree, and Random Forest algorithms #211

Open
wants to merge 15 commits into
base: main
Choose a base branch
from
90 changes: 90 additions & 0 deletions ml/svm.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
module ml

import math

pub struct SVMConfig {
pub mut:
max_iterations int = 1000
learning_rate f64 = 0.01
tolerance f64 = 1e-6
}

pub struct DataPoint {
pub mut:
x []f64
y int
}

pub struct SVMModel {
pub mut:
weights []f64
bias f64
config SVMConfig
}

pub struct SVM {
pub mut:
model &SVMModel = unsafe { nil }
config SVMConfig
}

pub fn SVM.new(config SVMConfig) &SVM {
return &SVM{
config: config
}
}

pub fn (mut s SVM) train(data []DataPoint) {
s.model = train_svm(data, s.config)
}

pub fn (s &SVM) predict(x []f64) int {
return predict(s.model, x)
}

fn vector_dot(x []f64, y []f64) f64 {
mut sum := 0.0
for i := 0; i < x.len; i++ {
sum += x[i] * y[i]
}
return sum
}

pub fn train_svm(data []DataPoint, config SVMConfig) &SVMModel {
mut model := &SVMModel{
weights: []f64{len: data[0].x.len, init: 0.0}
bias: 0.0
config: config
}

for _ in 0 .. config.max_iterations {
mut cost := 0.0
for point in data {
prediction := vector_dot(model.weights, point.x) + model.bias
margin := f64(point.y) * prediction

if margin < 1 {
for i in 0 .. model.weights.len {
model.weights[i] += config.learning_rate * (f64(point.y) * point.x[i] - 2 * config.tolerance * model.weights[i])
}
model.bias += config.learning_rate * f64(point.y)
cost += 1 - margin
} else {
for i in 0 .. model.weights.len {
model.weights[i] -= config.learning_rate * 2 * config.tolerance * model.weights[i]
}
}
}

if cost == 0 {
break
}
}

return model
}

pub fn predict(model &SVMModel, x []f64) int {
prediction := vector_dot(model.weights, x) + model.bias
return if prediction >= 0 { 1 } else { -1 }
}
73 changes: 73 additions & 0 deletions ml/svm_test.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
module ml

import math

fn test_vector_dot() {
x := [1.0, 2.0, 3.0]
y := [4.0, 5.0, 6.0]
result := vector_dot(x, y)
assert math.abs(result - 32.0) < 1e-6
}

fn test_svm_new() {
config := SVMConfig{}
svm := SVM.new(config)
assert svm.config == config
}

fn test_svm_train_and_predict() {
mut svm := SVM.new(SVMConfig{})
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], -1},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], -1},
]
svm.train(data)

for point in data {
prediction := svm.predict(point.x)
assert prediction == point.y
}
}

fn test_train_svm() {
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], -1},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], -1},
]
config := SVMConfig{}
model := train_svm(data, config)

for point in data {
prediction := predict(model, point.x)
assert prediction == point.y
}
}

fn test_predict() {
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], -1},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], -1},
]
config := SVMConfig{}
model := train_svm(data, config)

for point in data {
prediction := predict(model, point.x)
assert prediction == point.y
}
}

fn main() {
test_vector_dot()
test_svm_new()
test_svm_train_and_predict()
test_train_svm()
test_predict()
println('All tests passed successfully!')
}
Loading