Skip to content

valdeanda/Useful_scripts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Useful scripts

This repository contains useful tips/tricks/scripts that I have picked up or developed over the years. The scripts are mainly written in (bash, awk,perl,R,python), and some of them have been written by by my dear friends and collaborators:


Dependencies

For some of the scripts you have install the following dependencies

sudo apt-get install python3 python3-pip python3-matplotlib \
ipython3-notebook python3-mpltoolkits.basemap
sudo pip3 install -U pip
sudo -H pip3 install --upgrade pandas numpy scipy seaborn 
sudo -H pip3 install -U scikit-learn

Visualization

Bubble plot

Author: Augusto César Poot Hernandez,head of the Unidad de Bioinformática y Manejo de la Información of the Instituto de Fisiología Celular, UNAM

Scrip to create a bubble chart from any dataframe contanining either normalized or absolute values.

usage: bubble_chart.py [-h] [-im_format {png,pdf,ps,eps,svg,tif,jpg}]
                       [--im_res dpi]
                       filename

positional arguments:
  filename              Input file dataframe i.e abundances profile

optional arguments:
  -h, --help            show this help message and exit
  -im_format {png,pdf,ps,eps,svg,tif,jpg}, -f {png,pdf,ps,eps,svg,tif,jpg}
                        Output format for images [png].
  --im_res dpi, -r dpi  Output resolution for images in dot per inch (dpi)
                        [dpi].

Running Bubble plot with example data

 python3 bubble_chart.py  data_bubbleplot.tab -f  png -r 300

Customize your script

sns.set(font_scale=1) #change font size  
sns.set_style("whitegrid") #whitegrid to change background to white
plt.figure(figsize=(21,12)) #inches, modify to widen (x) or lengthen (y) --> original was 21,12
plt.tight_layout() #keeps axes names in same figure
bubble_super_mega_and_simpe_plot(df, 20, cmap='bone_r', ylabel='Tax Group (# of genomes)', xlabel='Genes',alpha=0.05)
# alpha = transparency
#cmap= color palete see below
 
#Recomended colors 

cmap='bone_r'
cmap='plasma'
cmap='coolwarm_r'
 
#cmap python = see https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

Heatmap

python3 heatmap.py -h

usage: heatmap.py [-h] [-f {png,pdf,ps,eps,svg,tif,jpg}] [-r dpi] filename

 This script create a cluster map

positional arguments:
  filename              Input file derived mebs_output with classification

optional arguments:
  -h, --help            show this help message and exit
  -f {png,pdf,ps,eps,svg,tif,jpg}, --im_format {png,pdf,ps,eps,svg,tif,jpg}
                        Output format for images [png].
  -r dpi, --im_res dpi  Output resolution for images in dot per inch (dpi)
                        [dpi].

Example:
    $  python3 heatmap.py data.heatmap.tsv
For Mac OSX users:
Create a conda environment for heatmap.py using the included .yml file heatmap_env_conda_osx.yml:

conda env create -f heatmap_env_conda_osx.yml

A Linux environment will be provided soon.

Horizontal Barplot

R script that was used to plot the number of achaeal genomes by taxonomy described in Baker et al., 2020

The input data data_barplot.tab, looks like this, the scripts keeps the specific order that you want your data to sorted.

Phylum	Superphylum	Number of genomes
Heimdallarchaeota	Asgard	66
Lokiarchaeota 	Asgard	63
Unclassified_Asgard	Asgard	37
Thorarchaeota	Asgard	32
Helarchaeota	Asgard	19
barplot.R

Histogram distribution

From a scaffold lenght tabular file see below how to generate sequence length file from multifasta

Compute the lenght

seqkit fx2tab --length --name --header-line sample.contigs.fa >> sample.length.tab
less sample.lenght.tab

name    length
4484_scaffold_11179     2148
4484_scaffold_8359      2609
4484_scaffold_3616      4460
4484_scaffold_7824      2728
4484_scaffold_6736      3024
4484_scaffold_9058      2482
4484_scaffold_8774      2534
4484_scaffold_4047      4173
4484_scaffold_9826      2344
usage: hist.py [-h] [-im_format {png,pdf,ps,eps,svg,tif,jpg}] [--im_res dpi]
               filename

positional arguments:
  filename              lenght file

optional arguments:
  -h, --help            show this help message and exit
  -im_format {png,pdf,ps,eps,svg,tif,jpg}, -f {png,pdf,ps,eps,svg,tif,jpg}
                        Output format for images [pdf].
  --im_res dpi, -r dpi  Output resolution for images in dot per inch (dpi)
                        [dpi].

Example:
$  python3 histplot.py  sample.lenght tab

Replace names from a phylogenetic tree

perl Replace_tree_names.pl mapping_file tree > renamed_tree

Fasta file processing

Split fasta

Requires biopython

pip3 install biopython

Script that is useful if you have a large fasta file and you want to split it into small files of the same size

python3 split_fasta.py

usage: split_fasta.py [-h] [-p PARTS] fastafile

Split a fasta file according in almost equal parts based on total base/residue
count. Stores a numpy array that contains the lengths of the sequences in the
file

positional arguments:
  fastafile             Fasta file to split

optional arguments:
  -h, --help            show this help message and exit
  -p PARTS, --parts PARTS
                        Number of parts to slice the file [10]

Rename headers based on input mapping file

From Tejashree Modak

python3 rename.py --mapping-file MappingFile.csv -i input.fasta -o output.fasta

Multifasta general stats

If you have a directory contanining fasta files (fa: either faa or fna) compute several stats, that are important when describing MAGs See Table 1 Preprint De Anda et al., 2020

for i in *.fa; do seqkit stat $i  >> stats; done
for i in *.fa ; do perl gc.pl $i >$i.gc.tab ; done

#Sum the scaffold GC and get the average 

for i in *.tab; do awk '{sum+= $2; n++ } END { if (n > 0) print sum / n; }' $i > $i.GC.average ; done
 

Compute GC content

I provide 2 scripts to compute the GC content of fasta sequences. The scripts takes a fasta file as the only parameter

  1. GC-content.pl

Usage: perl GC-content.pl

The output looks like this
 DNA Length is: 590771

 Number of G bases: 51234
 Number of C bases: 8076
 Number of T bases: 24808
 Number of A bases: 54731

 GC Content is: 10.0394230590195 %
  1. get_gc_content.pl

Usage: perl get_gc_content.pl

	This program takes a fasta file as it's first (and only) parameter.

It returns a tab delimited file (gc_out.txt): column 1 = header ID (everything between ">"
and the first space in the header), and column 2 = gc content for the fasta entry.


Generate sequence length file from multifasta

Option 1 awk

Obtained from here

cat file.fa | awk '$0 ~ ">" {if (NR > 1) {print c;} c=0;printf substr($0,2,100) "\t"; } $0 !~ ">" {c+=length($0);} END { print c; }' 
awk '$0 ~ ">" {if (NR > 1) {print c;} c=0;printf substr($0,2,100) "\t"; } $0 !~ ">" {c+=length($0);} END { print c; }' file.fa

Option 2 Seqkit

seqkit fx2tab --length --name --header-line file.fa >> file.lenght 

Option3 samtools

samtools faidx file.fa  |  cut -f1-2 file.fa.fai > file.lenght.tab

Convert fasta into 1 lners

From this 

> header 1
ATGCAATGCATG
ATGCCCGGTAGT
TTATAGAGATAG

to this 

> header 1 
ATGCAATGCATGATGCCCGGTAGTTTATAGAGATAG
perl -lne 'if(/^(>.*)/){ $head=$1 } else { $fa{$head} .= $_ } END{ foreach $s (sort(keys(%fa))){ print "$s\n$fa{$s}\n" }}' file.fa > file1ne.fa 

Average length of multifasta

perl -lne 'if(/^(>.*)/){$h=$1}else{$fa{$h}.=$_} END{ foreach $h (keys(%fa)){$m+=length($fa{$h})}; printf("%1.0f\t",$m/scalar(keys(%fa))) }' file.fa

Keep sequences of certain length

In this case we are keeping sequences >100 bp

perl -lne 'if(/^(>.*)/){ $head=$1 } else { $fa{$head} .= $_ } END{ foreach $s (keys(%fa)){ print "$s\n$fa{$s}\n" if(length($fa{$s})>100) }}' file.fa > file100.fa

Change the headers for fasta file name

 perl -lne 'if(/^>(\S+)/){ print ">$ARGV $1"} else{ print }' file.fa > file_renamed.fa

Histogram of total number of sequences in a large genomic dataset

Let's suppose that you have thousands of genomes and you want to compare the total number of sequences in your genomic dataset. If all your genomes are either .faa or .fna extension, you can use the following one-line command to count the number of sequences and generate a histogram. You can change the figure to pdf, just change pdf("seq.pdf");

grep -c ">" *.faa  | sed 's/:/\t/g' | cut -f 2 | Rscript -e 'data=abs(scan(file="stdin")); png("seq.png"); hist(data,xlab="secuences")'

Remove fasta sequences from list of headers

It requires a list of headers to remove from a fasta file

List of headers to remove example (sequence_to_remove.txt):

scaffold_142207_c1_687
scaffold_98552_c1_471
scaffold_70258_c1_330
scaffold_155515_c1_771

Option 1 python script

python3 remove_sequences.py file.fa sequence_to_remove.txt > file_filtered.fa 

Option 2 awk

Formating will be different since awk adds spaces, but sequence will be the same as Option 1.

awk 'BEGIN{while((getline<"sequence_to_remove.txt")>0)l[">"$1]=1}/^>/{f=!l[$1]}f' file.fa > file_filtered.fa

Option 3 grep

Remove only the headers not the entire scaffold if working with metagenomic data.

grep -v -f sequence_to_remove.txt file.fa  > file_filtered.fa 

Extract fasta sequences from list of headers

Option 1 pullseq

pullseq -i file.fa -n  sequences_to_extract.txt > extracted_sequences.fa

Option 2 samtools

cat sequences_to_extract.txt  | xargs -n 1 samtools faidx file.fa >> extracted_sequences.fa 

Option 3 bedtools

Extract fasta with coordinates

sreformat fasta file.fa > file.reformat.fna
bedtools getfasta -fi file.reformat.fna -bed sequences_to_extract_coordinates.tab -fo file_out.fa

Separate a long fasta-file into many separate single fasta sequences

Many options are available here, the one that works for me is this one

while read line
do
    if [[ ${line:0:1} == '>' ]]
    then
        outfile=${line:1:11}.fa 
        echo $line > $outfile
    else
        echo $line >> $outfile
    fi

done < myseq.fa

Find common sequences between 2 fasta files

For example if you have cleaned a MAG and you want to know which scaffolds were removed use seqkit

  1. First get the common headers:
seqkit common -s file1.fa file2.fa|grep '>'|cut -c2- > common_ids
  1. Get all sequences from fasta file1.fa that do not match the IDs in common_ids and store the result in file3.fa:
seqkit grep file1.fa -v -n -f common_ids -o file3.fa
  1. Explore file3 which has the removed sequences in the clean bin

Description of PFAM identifiers

  1. Create a list of PFAM identifiers
head identifiers.txt

PF13243
PF13249
PF02458
  1. Run the following commands, originally created by Dr. Carlos Cantalapiedra and incorporated in MEBS
cat identifieres.txt | while read  pfam; do
desc=$(curl http://pfam.xfam.org/family/"$pfam"/desc | head -1);
printf "$pfam\t";
printf "$desc\n";
done 2> /dev/null \
> identifiers.desc.tab

Join files

Take a column of 1 file and another column from another file and create a new file with those columns No need for matching column

paste <(awk '{print $1}' file1.txt ) <(awk '{print $2}' file2.txt ) > file3.txt

Download genomes from a list ("ftp_GCA_download.txt") of ftp links

for next in $(cat ftp_GCA_download.txt); do wget  "$next"; done

or you can do wget -i ftp_GCA_download.txt

Print duplicates in a column ($1 = column 1)

awk 'x[$1]++ == 1 { print $1 " is duplicated"}'

Cut columns from 1 file and create a new file with those columns

cut -f2,3 file1.txt > file2.txt

Search "pattern" and add "replace_pattern" at the beginning of the line (^)

sed '/pattern/ s/^/replace_pattern/' file.txt

Search "pattern" and replace the 2nd occurrence of it (/2') with "replace_pattern"

sed 's/pattern/replace_pattern/2' file.txt

Delete all characters after the first space

This is very useful if you have a long header in fasta sequences and you want to get rid of all the characters that aren't useful

sed 's/\s.*$//' file.fa > file2.fa

Verifying empty columns

In a file of 2 columns, if 2nd column of file is blank, print 1st column followed by "Your Words", otherwise print 1st and 2nd column, create new file of all this output

awk '{if (!$2) {print $1,"YourWords"} else {print $1, $2}}'  > file.tsv

Download genomes from ncbi

Genome browse overview https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/

Genbank assembly summary file

wget http://ftp.ncbi.nlm.nih.gov/genomes/genbank/assembly_summary_genbank.txt

Get the complete and latest genomes from assembly summary genbank

awk -F "\t" '$12=="Complete Genome" && $11=="latest"{print $20}' assembly_summary_genbank.txt

Run a jupyter notebook remotely

Modified from Huan Fan's github

  1. Create an alias in your .bash_profile or .bashrc file with the information of your server
 alias server_jupyter='ssh -p XX  -L 8000:localhost:8888 [email protected]. XXX'
  1. Once in your server set a secure password to acess your notebooks
jupyter notebook password
  1. Start jupyter on the remote server
jupyter notebook 
  1. It asks you whether you “Accepting one-time-token-authenticated connection from 127.0.0.1”. I answered ‘__A__laways’ but next time it kept asking me… Then it complains:
	Jupyter Notebook requires JavaScript.
   		Please enable it to proceed.  
  1. Just ingore it buy entering Q. Then your token would be given on the last line, some thing like:
http://localhost:8888/?token=5640c991ffc0c0c6071e9f0d0100d7204e4b05a6d400c440
  1. Access from your local browser Replace 8888 with 8000, since the later is the port we opened for your local machine, so go to
http://localhost:8000/?token=5640c991ffc0c0c6071e9f0d0100d7204e4b05a6d400c440 

on your local browser and you are ready to go!

Download sequences from a TGRFAM markov model

You can use

Uniprot

or

NCBI

Retrieve taxonomy categories from NCBI Taxonomy

After searching several options including this package in R, I came across a super friendly to use plattfrom taxonkit - A Cross-platform and Efficient NCBI Taxonomy Toolkit

After installing it, download and uncompress these NCBI taxonoomy file

ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz

I downloaded and tar -xvzf the directory in /home/valdeanda/DB/TAXID

Your input file, in this case IDs.txt should look like this

02125
1111708
111780
111781
1147
1284629
165597
1666905
1807358
1827144
1920663
1925591
1933929

To run taxonkit run this

taxonkit lineage --data-dir /home/valdeanda/DB/TAXID/ IDs.txt > IDs.taxonomy.tab

Extract sequences were removed after a Bin cleaning step

#!/bin/bash
while IFS= read -r line1 <&3 && IFS= read -r line2 <&4;
do ./seqkit common -s  OriginalBins/$line1  CleanBins/$line2 |grep '>'| cut -c2-  > $line1.common.txt; 
done 3<OriginalBins.txt  4<CleanBins.txt

#!/bin/bash
while IFS= read -r line1 <&3 && IFS= read -r line2 <&4
do ./seqkit grep OriginalBins/$line1 -v  -n -f $line2 -o $line1.extracted.fa
done 3<OriginalBins.txt 4<OriginalBinsCommon.txt

New taxonomy files available with lineage, type, and host information

last revised July 7th 2021

From 
https://ncbiinsights.ncbi.nlm.nih.gov/2018/02/22/new-taxonomy-files-available-with-lineage-type-and-host-information/

wget ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/new_taxdump.tar.gz

Look at the description of the files in the readme
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/taxdump_readme.txt

Retrieving NCBI Taxa IDs from refseq or GenBank assembly accession

#1. Install entrez
sudo apt install ncbi-entrez-direct

https://linsalrob.github.io/ComputationalGenomicsManual/Databases/NCBI_Edirect.html


ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/nucl_gb.accession2taxid.gz

for i in `cat ./acc`; do zgrep -m1 -w  "$i" nucl_gb.accession2taxid.gz; done
X68822  X68822.1        9731    1118
Z18640  Z18640.1        9731    1121
Z18643  Z18643.1        27615   1128

Biosample information

for i in `cat Biosample.tab` ; do wget -q -O - "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=biosample&id=$i" > $i ; done
#!/bin/bash
for ACC in `cat Clean_Proteins_acc_number.txt`
do
   echo -n -e "$ACC\t"
   curl -s "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id=${ACC}&rettype=fasta&retmode=xml" |\
   grep TSeq_taxid |\
   cut -d '>' -f 2 |\
   cut -d '<' -f 1 |\
   tr -d "\n"
   echo
 done

Download protein sequences by using a list of NCBI identifiers

Conda is required to use Entrez this way.

#Create an environment in which you can add Entrez Direct
conda create --name entrez

#Activate this new environment
conda activate entrez

#Install Entrez
conda install -c bioconda entrez-direct

#Compile a list of Accession numbers from NCBI (PROTEINS)

less list.txt

ABO08866.1
AFA39020.1
AFA39042.1
AFI78392.1
AOQ24367.1
APC08827.1
ATY72478.1

#Change file to comma separated instead of column
cat list.txt | tr "\n" "," | sed 's/,$//' > list.csv 

less list.csv 

ABO08866.1,AFA39020.1,AFA39042.1,AFI78392.1,AOQ24367.1,APC08827.1,ATY72478.1

#Make a usable script from the list

sed 's/^/efetch -db protein -format fasta -id /' list.csv > list.sh

less list.sh

efetch -db protein -format fasta -id ABO08866.1,AFA39020.1,AFA39042.1,AFI78392.1,AOQ24367.1,APC08827.1,ATY72478.1

#Run the new script
bash list.sh > list.fa

https://www.metagenomics.wiki/tools/blast/blastn-output-format-6

Map reads to an assembly

You will need to use samtools >= 1.9 and bwa >= 0.7.17 If the versions of these tools are outdated on the server, use Conda for a mapping environment.

env_name=mapping_env; conda create -n $env_name && \
conda activate $env_name && \
conda install -c bioconda bwa=0.7.17 samtools=1.9 && \
echo "SUCCESS"

You will need the index files in the same location as the fasta assembly file. If not, run following command

#index assembly we want to map to
#combined FASTA containing multiple MAGs in this case
bwa index genomes_combined.fna
#see the available parameters
bash bwa_bam_map.sh -h

#assembly we want to map to
#we can map to a combined FASTA containing multiple MAGs in this case
genomes_combined.fna

#reads we want to map
Meg22_1012.fastq.gz

#you can assign an identifier for the run with -s, the output bam and bam index filenames will contain this string

#ensure -b and -k (number of threads for bwa and samtools) do not exceed the number displayed with nproc

bash bwa_bam_map.sh -i genomes_combined.fna -r Meg22_1012.fastq.gz -o read_mapping_output_dir -s genomes_combined-Meg22_1012 -b 40 -k 40 -t /home/profile/tmp -e read_mapping_output_dir/error

This will output coordinate-sorted BAM files, and a BAM index file

Check BAM files for file integrity and proper sorting

You will need to use samtools >= 1.9

bash bam_check.sh -b <directory with BAM files> -o <output directory> -j <number of parallel tests> -n <pattern of BAMs, e.g. Meg22*.bam . Omitting this will analyze all files ending with .bam in the directory>

Resources

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •