Published article: https://doi.org/10.1093/gigascience/giad028
Project name: An accessible infrastructure for artificial intelligence using a docker-based Jupyterlab in Galaxy
Project home page: https://github.com/usegalaxy-eu/gpu-jupyterlab-docker
Docker file: https://github.com/usegalaxy-eu/gpu-jupyterlab-docker/blob/master/Dockerfile
Container at Quay.io: https://quay.io/galaxy/docker-ml-jupyterlab/tags
Galaxy tool (that runs this container): https://github.com/usegalaxy-eu/galaxy/blob/release_23.0_europe/tools/interactive/interactivetool_ml_jupyter_notebook.xml
Data: https://zenodo.org/record/6091361 (to run sample notebooks at https://github.com/anuprulez/gpu_jupyterlab_ct_image_segmentation)
How to use: Galaxy training network tutorial
Operating system(s): Linux
Programming language(s): Python, Docker, XML
iPython sample notebooks: https://github.com/anuprulez/gpu_jupyterlab_ct_image_segmentation
Other requirements: Docker 20.10.21, (Optional) CUDA 11.8, CUDA DNN 8
License: MIT License
RRID: SCR_022695
bioToolsID: gpu-enabled_docker_container_with_jupyterlab_for_ai
-
Download container:
docker pull quay.io/galaxy/docker-ml-jupyterlab:galaxy-integration-0.3
-
Run container (on host without Nvidia GPU):
docker run -it -p 8888:8888 -v <<path to local folder>>:/import quay.io/galaxy/docker-ml-jupyterlab:galaxy-integration-0.3
-
Run container (on host with Nvidia GPU):
docker run -it --gpus all -p 8888:8888 -v <<path to local folder>>:/import quay.io/galaxy/docker-ml-jupyterlab:galaxy-integration-0.3
-
Open the link to the Jupyterlab (e.g.
http://<<host>>:8888/ipython/lab
)
- Python (version: 3.10.0)
- Jupyterlab (version: 3.6.5)
- Jupyterlab-git (version: 0.41.0)
- Scikit learn (version: 1.1.2)
- Scikit image (version: 0.21.0)
- Tensorflow (version: 2.11)
- ONNX (version: 1.12.0)
- Nibabel (5.1.0)
- OpenCV (version: 4.7)
- CUDA (version: 11.8)
- CUDA DNN (version: 8.6)
- Bqplot (version: 0.12.39)
- Bokeh (version: 3.2.0)
- Matplotlib (version: 3.7.2)
- Seaborn (version: 0.12.2)
- Voila (version: 0.4.1)
- Jupyterlab-nvdashboard (version: 0.8.0)
- Py3Dmol (version: 2.0.3)
- Elyra AI (version: 3.15.0)
- Colabfold (version: 1.5.2)
- Bioblend (version: 1.1.1)
- Biopython (version: 1.81)
- many more ...