Skip to content

Commit

Permalink
Create README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
uerkan80 authored Jul 21, 2020
1 parent 89fb0f3 commit aab158b
Showing 1 changed file with 9 additions and 0 deletions.
9 changes: 9 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
# EigenClass
A Precise and Stable Machine Learning Algorithm: Eigenvalue Classification (EigenClass)
A Precise and Stable Machine Learning Algorithm: Eigenvalue Classification (EigenClass)

Citation:

Erkan, U. A Precise and Stable Machine Learning Algorithm: Eigenvalue Classification (EigenClass). Neural Computing and Applications (2020).

Abstract: In this study, a precise and efficient eigenvalue-based machine learning algorithm, particularly denoted as Eigenvalue Classification (EigenClass) algorithm, has been presented to deal with classification problems. The EigenClass algorithm is constructed by exploiting an eigenvalue-based proximity evaluation. To appreciate the classification performance of EigenClass, it is compared with the well-known algorithms, such as k–Nearest Neighbours (kNN), Fuzzy k–Nearest Neighbours (Fuzzy kNN), Random Forest (RF) and Multi Support Vector Machines (MSVM). Number of 20 different datasets with various attributes and classes are used for the comparison. Every algorithm is trained and tested for 30 runs through 5-fold cross-validation. The results are then compared among each other in terms of the most used measures, such as accuracy, precision, recall, micro F-measure, and macro F-measure. It is demonstrated that EigenClass exhibits the best classification performance for 15 datasets in terms of every metric and, in a pairwise comparison, outperforms the other algorithms for at least 16 datasets in consideration of each metric. Moreover, the algorithms are also compared through statistical analysis and computational complexity. Therefore, the achieved results show that EigenClass is a precise and stable algorithm as well as the most successful algorithm considering the overall classification performances.

0 comments on commit aab158b

Please sign in to comment.