Tesselo's Model Alquemy
Package to enable easy usage of Tesselo's common model
- U-Net models
- 3D and 2D architetures
- Make variable number of layers
- Pixel Model:
- Make as a class
- Models:
- ResNet
- LSTM
- Outside packages
- Test Models:
- Working samples to test models
- Visualize results
- Visualize inner layers
from alquimodelia.unet_arch import UNet2D, UNet3D
UNet3D_model = UNet3D(
n_filters=16,
number_of_conv_layers=None,
kernel_size=3,
batchnorm=True,
padding_style="same",
activation_middle="relu",
kernel_initializer="he_normal",
timesteps=12,
width=600,
height=600,
padding=None,
num_bands=10,
num_classes=4,
data_format="channels_last",
)
from alquimodelia.resnet_arch import ResNet2D, ResNet3D
ResNet3D_model = ResNet3D(
n_filters=16,
timesteps=12,
width=600,
height=600,
num_bands=10,
num_classes=4,
data_format="channels_last",
)
from alquimodelia.rnn_lstm_arch import RnnLSTM
RnnLSTM_model = RnnLSTM(
timesteps=48,
num_bands=10,
num_classes=12,
activation_final="softmax",
data_format="channels_last",
lstm_units=(120, 80),
)
Harshall Lamba : https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
Gracelyn Shi: https://towardsdatascience.com/implementing-a-resnet-model-from-scratch-971be7193718
Jason Brownlee: https://machinelearningmastery.com/keras-functional-api-deep-learning/