Skip to content

Commit

Permalink
Merge pull request #23 from tensorlayer/dev-distributed
Browse files Browse the repository at this point in the history
Dev distributed
  • Loading branch information
quantumiracle authored Jun 26, 2021
2 parents 1788af8 + dae4afc commit 6811a32
Show file tree
Hide file tree
Showing 78 changed files with 16,473 additions and 15,599 deletions.
156 changes: 154 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ Please check our [**Online Documentation**](https://rlzoo.readthedocs.io) for de
- [Contents](#contents)
- [Algorithms](#algorithms)
- [Environments](#environments)
- [Configurations](#configuration)
- [Configurations](#configurations)
- [Properties](#properties)
- [Troubleshooting](#troubleshooting)
- [Credits](#credits)
Expand All @@ -66,8 +66,14 @@ the coming months after initial release. We will keep improving the potential pr

<details><summary><b>Version History</b> <i>[click to expand]</i></summary>
<div>

* 1.0.4 (Current version)

* 1.0.3 (Current version)
Changes:

* Add distributed training for DPPO algorithm, using Kungfu

* 1.0.3

Changes:

Expand Down Expand Up @@ -279,6 +285,148 @@ python algorithms/ac/run_ac.py
We also provide an interactive learning configuration with Jupyter Notebook and *ipywidgets*, where you can select the algorithm, environment, and general learning settings with simple clicking on dropdown lists and sliders! A video demonstrating the usage is as following. The interactive mode can be used with [`rlzoo/interactive/main.ipynb`](https://github.com/tensorlayer/RLzoo/blob/master/rlzoo/interactive/main.ipynb) by running `$ jupyter notebook` to open it.

![Interactive Video](https://github.com/tensorlayer/RLzoo/blob/master/gif/interactive.gif)


### Distributed Training
RLzoo supports distributed training frameworks across multiple computational nodes with multiple CPUs/GPUs, using the [Kungfu](https://github.com/lsds/KungFu) package. The installation of Kungfu requires to install *CMake* and *Golang* first, details see the [website of Kungfu](https://github.com/lsds/KungFu).
An example for distributed training is contained in folder `rlzoo/distributed`, by running the following command, you will launch the distributed training process:
```bash
rlzoo/distributed/run_dis_train.sh
```
<details><summary><b>Code in Bash script</b> <i>[click to expand]</i></summary>
<div>

```bash
#!/bin/sh
set -e

cd $(dirname $0)

kungfu_flags() {
echo -q
echo -logdir logs

local ip1=127.0.0.1
local np1=$np

local ip2=127.0.0.10
local np2=$np
local H=$ip1:$np1,$ip2:$np2
local m=cpu,gpu

echo -H $ip1:$np1
}

prun() {
local np=$1
shift
kungfu-run $(kungfu_flags) -np $np $@
}

n_learner=2
n_actor=2
n_server=1

flags() {
echo -l $n_learner
echo -a $n_actor
echo -s $n_server
}

rl_run() {
local n=$((n_learner + n_actor + n_server))
prun $n python3 training_components.py $(flags)
}

main() {
rl_run
}

main
```
The script specifies the ip addresses for different computational nodes, as well as the number of policy learners (updating the models), actors (sampling through interaction with environments) and inference servers (policy forward inference during sampling process) as `n_learner`, `n_actor` and `n_server` respectively.

</div>
</details>

Other training details are specified in an individual Python script named `training_components.py` **within the same directory** as `run_dis_train.sh`, which can be seen as following.

<details><summary><b>Code in Python script</b> <i>[click to expand]</i></summary>
<div>

```python
from rlzoo.common.env_wrappers import build_env
from rlzoo.common.policy_networks import *
from rlzoo.common.value_networks import *
from rlzoo.algorithms.dppo_clip_distributed.dppo_clip import DPPO_CLIP
from functools import partial

# Specify the training configurations
training_conf = {
'total_step': int(1e7), # overall training timesteps
'traj_len': 200, # length of the rollout trajectory
'train_n_traj': 2, # update the models after every certain number of trajectories for each learner
'save_interval': 10, # saving the models after every certain number of updates
}

# Specify the environment and launch it
env_name, env_type = 'CartPole-v0', 'classic_control'
env_maker = partial(build_env, env_name, env_type)
temp_env = env_maker()
obs_shape, act_shape = temp_env.observation_space.shape, temp_env.action_space.shape

env_conf = {
'env_name': env_name,
'env_type': env_type,
'env_maker': env_maker,
'obs_shape': obs_shape,
'act_shape': act_shape,
}


def build_network(observation_space, action_space, name='DPPO_CLIP'):
""" build networks for the algorithm """
hidden_dim = 256
num_hidden_layer = 2
critic = ValueNetwork(observation_space, [hidden_dim] * num_hidden_layer, name=name + '_value')

actor = StochasticPolicyNetwork(observation_space, action_space,
[hidden_dim] * num_hidden_layer,
trainable=True,
name=name + '_policy')
return critic, actor


def build_opt(actor_lr=1e-4, critic_lr=2e-4):
""" choose the optimizer for learning """
import tensorflow as tf
return [tf.optimizers.Adam(critic_lr), tf.optimizers.Adam(actor_lr)]


net_builder = partial(build_network, temp_env.observation_space, temp_env.action_space)
opt_builder = partial(build_opt, )

agent_conf = {
'net_builder': net_builder,
'opt_builder': opt_builder,
'agent_generator': partial(DPPO_CLIP, net_builder, opt_builder),
}
del temp_env

from rlzoo.distributed.start_dis_role import main

print('Start Training.')
main(training_conf, env_conf, agent_conf)
print('Training Finished.')

```
Users can specify the environment, network architectures, optimizers and other training detains in this script.

</div>
</details>

Note: if RLzoo is installed, you can create the two scripts `run_dis_train.sh` and `training_components.py` in whatever directory to launch distributed training, as long as the two scripts are in the same directory.



## Contents
Expand Down Expand Up @@ -399,8 +547,12 @@ Our core contributors include:
[Tianyang Yu](https://github.com/Tokarev-TT-33),
[Yanhua Huang](https://github.com/Officium),
[Hongming Zhang](https://github.com/initial-h),
[Guo Li](https://github.com/lgarithm),
Quancheng Guo,
[Luo Mai](https://github.com/luomai),
[Hao Dong](https://github.com/zsdonghao)


## Citing

```
Expand Down
8 changes: 4 additions & 4 deletions rlzoo/.gitignore
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
*.pyc
/img
/log
/model
*.pyc
/img
/log
/model
Empty file modified rlzoo/__init__.py
100644 → 100755
Empty file.
28 changes: 14 additions & 14 deletions rlzoo/algorithms/__init__.py
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
from .ac.ac import AC
from .pg.pg import PG
from .dqn.dqn import DQN
from .a3c.a3c import A3C
from .ddpg.ddpg import DDPG
from .td3.td3 import TD3
from .sac.sac import SAC
from .ppo.ppo import PPO
from .ppo_penalty.ppo_penalty import PPO_PENALTY
from .ppo_clip.ppo_clip import PPO_CLIP
from .dppo.dppo import DPPO
from .dppo_penalty.dppo_penalty import DPPO_PENALTY
from .dppo_clip.dppo_clip import DPPO_CLIP
from .trpo.trpo import TRPO
from .ac.ac import AC
from .pg.pg import PG
from .dqn.dqn import DQN
from .a3c.a3c import A3C
from .ddpg.ddpg import DDPG
from .td3.td3 import TD3
from .sac.sac import SAC
from .ppo.ppo import PPO
from .ppo_penalty.ppo_penalty import PPO_PENALTY
from .ppo_clip.ppo_clip import PPO_CLIP
from .dppo.dppo import DPPO
from .dppo_penalty.dppo_penalty import DPPO_PENALTY
from .dppo_clip.dppo_clip import DPPO_CLIP
from .trpo.trpo import TRPO
Empty file modified rlzoo/algorithms/a3c/__init__.py
100644 → 100755
Empty file.
Loading

0 comments on commit 6811a32

Please sign in to comment.