Skip to content

Variables

philippelucarelli edited this page Mar 14, 2017 · 8 revisions

Model set-up (see annotations in the driver script)

Select pre-defined model

Model_Example Choose model example
1 Pipeline example
2 PDGF model
3 CellNOpt example
4 Apoptosis model

Define optmisation options

Variable Explanation
optRound Number of optimisation round
MaxFunEvals Number of maximal function being evaluated (3000=default)
MaxIter Number of maximal iteration being evaluated (3000=default)
Parallelisation Use multiple cores for optimisation? (0=no, 1=yes)
HLbound Qualitative threshold between high and low inputs (0.5=default)
Forced=1 Define whether single inputs and Boolean gates are forced to probability 1 (0=no, 1=yes)
InitIC=2 Initialise parameters' distribution (1=uniform, 2=normal)

Define plotting and saving (0=no, 1=yes)

Variable Explanation
PlotFitEvolution Graph of optimised fitting cost over iteration
PlotFitSummary Graph of state values at steady-state versus measurements (all in 1)
PlotFitIndividual Graph of state values at steady-state versus measurements (individual)
PlotHeatmapCost Heatmap of optimal costs for each output for each condition absolute cost
PlotStateSummary Graph of only state values at steady-sate (all in 1)
PlotStateEvolution Graph of state values evolution over the course of the simulation (two graphs)
PlotBiograph Graph of network topology, nodes activities, and optimised parameters
PlotAllBiographs (Only for machines with strong GPUs) Plot all Biographs above

Additional analyses after the optimisation with the default setting (0=no, 1=yes)

Variable Explanation
Resampling_Analysis Resampling of experimental data and re-optimise
NDatasets Number of artificial datasets to resample
:-------: :-:
LPSA_Analysis Local parameter sensitivity analysis
Fast_Option Performing faster LPSA by stopping if fitting costs go over a set threshold value
LPSA_Increments Number of increments for LPSA. Increase for finer resolution
:-------: :-:
KO_Analysis Parameter knock-out analysis
KONodes_Analysis Node knock-out analysis

Model & Optimisation results (stored in Matlab workspace)

Model information and inputs

Variable Explanation
estim Structure variable to store model information and results
estim.Interactions List of interactions in the model, 1st col = number of interaction, 2nd col = inputs, 3rd col = type of interaction (-> = activate; -
estim.Input List of input nodes (columns) for each experiment (rows)
estim.Input_idx List of indices of input nodes (columns) in the model for each experiment (rows)
estim.Output Experimental data for output nodes (columns) for each experiment (rows); Note: NaN is used for missing data point(s)
estim.Output_idx List of indices of Output nodes (columns) in the model for each experiment (rows)
estim.Output The error of experimental data (e.g. SD or SEM) for output nodes (columns) for each experiment (rows); Note: NaN is used for missing data point(s)
estim.state_names List of names for all nodes in the model
estim.NrStates Number of state/node in the model
estim.NrParams Number of optimising parameters in the model
estim.param_index Matrix of network information where 1st col = input indices, 2nd col = output indices, 3rd & 4th col = type of interactions (activate or inhibit, respectively), 5th col = type of Boolean gate (1 = AND, 2 = OR), 6th col = running number of Boolean gate in the model, 7th col = parameter range constraints (0 = default, -1 = low, 1 = high)
estim.param_vector Vector of optimising parameters
estim.ma Matrix of activation (read indices in estim.state_names)
estim.mi Matrix of inhibition(read indices in estim.state_names)
estim.Aeq Constrain equations for fmincon where Aeq*estim.param_vector = beq (constraints for sum of activating probabilities being 1)
estim.beq Constrain equations for fmincon where Aeq*estim.param_vector = beq (constraints for sum of activating probabilities being 1)
estim.A Constrain equations for fmincon where A*estim.param_vector = b (constraints for sum of inhibiting probabilities being less than 1)
estim.b Constrain equations for fmincon where A*estim.param_vector = b (constraints for sum of inhibiting probabilities being less than 1
estim.LB List of lower bounds for parameters
estim.UB List of upper bounds for parameters
estim.kInd Indices of parameters
estim.IdxInAct Extracted vectors for Input for activating reactions
estim.IdxOutAct Extracted vectors for Output for activating reactions
estim.IdxInInh Extracted vectors for Input for inhibiting reactions
estim.IdxOutInh Extracted vectors for Output for inhibiting reactions
estim.BoolMax Number of total Boolean gate(s) in the model
estim.BoolIdx Number of Boolean indices
estim.BoolOuts Indices of Boolean output node
estim.FixBool Indices of fixed Boolean variable
estim.option Default and customized optimisation options for fmincon
estim.SSthresh Threshold of fitting cost to accept the reach of steady-state

Optimisation outputs

Variable Explanation
estim.MaxTime The maximum running time from the optimisation
estim.AllofTheXs State trajectory of each nodes during the optimisation (better representation in the plots)
estim.MeanStateValueAll Mean state value from multiple simulations
estim.bestx The best set of optimised parameter values

Optimisation results as sub-structures (estim.Results)

Optimisation

Variable Explanation
estim.Results.Optimisation.FittingCost List all fitting costs
estim.Results.Optimisation.FittingTime List all optimisation time
estim.Results.Optimisation.ParamNames List all parameter names
estim.Results.Optimisation.BestParams List all best parameter values
estim.Results.Optimisation.StateNames List all state names

Fitting evolution

Variable Explanation
estim.Results.FitEvol.PlotCosts List all 3 re-run fitting costs
estim.Results.FitEvol.Cost1/.Cost2/.Cost3 List fitting costs from the 3 re-runs

Resampling

Variable Explanation
estim.Results.Resampling.Parameters List all parameters
estim.Results.Resampling.OptimisedParameters List all optimised parameters with new re-sampled measurements
estim.Results.Resampling.OptimisedSD List the standard deviation from all optimised parameters with new re-sampled measurements
estim.Results.Resampling.LargeSD Determine if the SD are larger than the threshold
estim.Results.Resampling.Costs List all fitting cost during resampling process

LPSA (Local parameter sensitivity analysis)

Variable Explanation
estim.Results.LPSA.ParamNames List of all parameter names
estim.Results.LPSA.Identifiability Vector determining whether each parameter is identifiable
estim.Results.LPSA.LPSA_Increments The number of parameter interval to estimate identifiability
estim.Results.LPSA.p_SA The list of parameters to perturb
estim.Results.LPSA.cost_SA The fitting cost after parameter perturbations
estim.Results.LPSA.CutOff The cut-off value of fitting cost to assess identifiability
estim.Results.LPSA.Interpretation Type of identifiability in estim.Results.LPSA.Identifiability ('1=Identifiable','2=Partially identifiable','3=Non-identifiable')

Knockout (interaction)

Variable Explanation
estim.Results.KnockOut.Parameters List of parameters to knock-out parameters
estim.Results.KnockOut.AIC_values List of AIC values after parameter knockout
estim.Results.KnockOut.KO_effect List of interpretation if knockout has a substantial effect
estim.Results.KnockOut.Interpretation Interpreter for knockout results ('0 = no KO effect','1 = KO effect')

KnockoutNode

Variable Explanation
estim.Results.KnockOutNode.Parameters List of nodes to knock-out
estim.Results.KnockOutNode.AIC_values List of AIC values after node knockout
estim.Results.KnockOutNode.KO_effect List of interpretation if knockout has a substantial effect
estim.Results.KnockOutNode.Interpretation Interpreter for knockout results ('0 = no KO effect','1 = KO effect')

|