-
Notifications
You must be signed in to change notification settings - Fork 5
Variables
philippelucarelli edited this page Mar 14, 2017
·
8 revisions
Model_Example | Choose model example |
---|---|
1 | Pipeline example |
2 | PDGF model |
3 | CellNOpt example |
4 | Apoptosis model |
Variable | Explanation |
---|---|
optRound | Number of optimisation round |
MaxFunEvals | Number of maximal function being evaluated (3000=default) |
MaxIter | Number of maximal iteration being evaluated (3000=default) |
Parallelisation | Use multiple cores for optimisation? (0=no, 1=yes) |
HLbound | Qualitative threshold between high and low inputs (0.5=default) |
Forced=1 | Define whether single inputs and Boolean gates are forced to probability 1 (0=no, 1=yes) |
InitIC=2 | Initialise parameters' distribution (1=uniform, 2=normal) |
Variable | Explanation |
---|---|
PlotFitEvolution | Graph of optimised fitting cost over iteration |
PlotFitSummary | Graph of state values at steady-state versus measurements (all in 1) |
PlotFitIndividual | Graph of state values at steady-state versus measurements (individual) |
PlotHeatmapCost | Heatmap of optimal costs for each output for each condition absolute cost |
PlotStateSummary | Graph of only state values at steady-sate (all in 1) |
PlotStateEvolution | Graph of state values evolution over the course of the simulation (two graphs) |
PlotBiograph | Graph of network topology, nodes activities, and optimised parameters |
PlotAllBiographs | (Only for machines with strong GPUs) Plot all Biographs above |
Variable | Explanation |
---|---|
Resampling_Analysis | Resampling of experimental data and re-optimise |
NDatasets | Number of artificial datasets to resample |
:-------: | :-: |
LPSA_Analysis | Local parameter sensitivity analysis |
Fast_Option | Performing faster LPSA by stopping if fitting costs go over a set threshold value |
LPSA_Increments | Number of increments for LPSA. Increase for finer resolution |
:-------: | :-: |
KO_Analysis | Parameter knock-out analysis |
KONodes_Analysis | Node knock-out analysis |
Variable | Explanation |
---|---|
estim | Structure variable to store model information and results |
estim.Interactions | List of interactions in the model, 1st col = number of interaction, 2nd col = inputs, 3rd col = type of interaction (-> = activate; - |
estim.Input | List of input nodes (columns) for each experiment (rows) |
estim.Input_idx | List of indices of input nodes (columns) in the model for each experiment (rows) |
estim.Output | Experimental data for output nodes (columns) for each experiment (rows); Note: NaN is used for missing data point(s) |
estim.Output_idx | List of indices of Output nodes (columns) in the model for each experiment (rows) |
estim.Output | The error of experimental data (e.g. SD or SEM) for output nodes (columns) for each experiment (rows); Note: NaN is used for missing data point(s) |
estim.state_names | List of names for all nodes in the model |
estim.NrStates | Number of state/node in the model |
estim.NrParams | Number of optimising parameters in the model |
estim.param_index | Matrix of network information where 1st col = input indices, 2nd col = output indices, 3rd & 4th col = type of interactions (activate or inhibit, respectively), 5th col = type of Boolean gate (1 = AND, 2 = OR), 6th col = running number of Boolean gate in the model, 7th col = parameter range constraints (0 = default, -1 = low, 1 = high) |
estim.param_vector | Vector of optimising parameters |
estim.ma | Matrix of activation (read indices in estim.state_names) |
estim.mi | Matrix of inhibition(read indices in estim.state_names) |
estim.Aeq | Constrain equations for fmincon where Aeq*estim.param_vector = beq (constraints for sum of activating probabilities being 1) |
estim.beq | Constrain equations for fmincon where Aeq*estim.param_vector = beq (constraints for sum of activating probabilities being 1) |
estim.A | Constrain equations for fmincon where A*estim.param_vector = b (constraints for sum of inhibiting probabilities being less than 1) |
estim.b | Constrain equations for fmincon where A*estim.param_vector = b (constraints for sum of inhibiting probabilities being less than 1 |
estim.LB | List of lower bounds for parameters |
estim.UB | List of upper bounds for parameters |
estim.kInd | Indices of parameters |
estim.IdxInAct | Extracted vectors for Input for activating reactions |
estim.IdxOutAct | Extracted vectors for Output for activating reactions |
estim.IdxInInh | Extracted vectors for Input for inhibiting reactions |
estim.IdxOutInh | Extracted vectors for Output for inhibiting reactions |
estim.BoolMax | Number of total Boolean gate(s) in the model |
estim.BoolIdx | Number of Boolean indices |
estim.BoolOuts | Indices of Boolean output node |
estim.FixBool | Indices of fixed Boolean variable |
estim.option | Default and customized optimisation options for fmincon |
estim.SSthresh | Threshold of fitting cost to accept the reach of steady-state |
Variable | Explanation |
---|---|
estim.MaxTime | The maximum running time from the optimisation |
estim.AllofTheXs | State trajectory of each nodes during the optimisation (better representation in the plots) |
estim.MeanStateValueAll | Mean state value from multiple simulations |
estim.bestx | The best set of optimised parameter values |
Optimisation
Variable | Explanation |
---|---|
estim.Results.Optimisation.FittingCost | List all fitting costs |
estim.Results.Optimisation.FittingTime | List all optimisation time |
estim.Results.Optimisation.ParamNames | List all parameter names |
estim.Results.Optimisation.BestParams | List all best parameter values |
estim.Results.Optimisation.StateNames | List all state names |
Fitting evolution
Variable | Explanation |
---|---|
estim.Results.FitEvol.PlotCosts | List all 3 re-run fitting costs |
estim.Results.FitEvol.Cost1/.Cost2/.Cost3 | List fitting costs from the 3 re-runs |
Resampling
Variable | Explanation |
---|---|
estim.Results.Resampling.Parameters | List all parameters |
estim.Results.Resampling.OptimisedParameters | List all optimised parameters with new re-sampled measurements |
estim.Results.Resampling.OptimisedSD | List the standard deviation from all optimised parameters with new re-sampled measurements |
estim.Results.Resampling.LargeSD | Determine if the SD are larger than the threshold |
estim.Results.Resampling.Costs | List all fitting cost during resampling process |
LPSA (Local parameter sensitivity analysis)
Variable | Explanation |
---|---|
estim.Results.LPSA.ParamNames | List of all parameter names |
estim.Results.LPSA.Identifiability | Vector determining whether each parameter is identifiable |
estim.Results.LPSA.LPSA_Increments | The number of parameter interval to estimate identifiability |
estim.Results.LPSA.p_SA | The list of parameters to perturb |
estim.Results.LPSA.cost_SA | The fitting cost after parameter perturbations |
estim.Results.LPSA.CutOff | The cut-off value of fitting cost to assess identifiability |
estim.Results.LPSA.Interpretation | Type of identifiability in estim.Results.LPSA.Identifiability ('1=Identifiable','2=Partially identifiable','3=Non-identifiable') |
Knockout (interaction)
Variable | Explanation |
---|---|
estim.Results.KnockOut.Parameters | List of parameters to knock-out parameters |
estim.Results.KnockOut.AIC_values | List of AIC values after parameter knockout |
estim.Results.KnockOut.KO_effect | List of interpretation if knockout has a substantial effect |
estim.Results.KnockOut.Interpretation | Interpreter for knockout results ('0 = no KO effect','1 = KO effect') |
KnockoutNode
Variable | Explanation |
---|---|
estim.Results.KnockOutNode.Parameters | List of nodes to knock-out |
estim.Results.KnockOutNode.AIC_values | List of AIC values after node knockout |
estim.Results.KnockOutNode.KO_effect | List of interpretation if knockout has a substantial effect |
estim.Results.KnockOutNode.Interpretation | Interpreter for knockout results ('0 = no KO effect','1 = KO effect') |