-
Notifications
You must be signed in to change notification settings - Fork 2
Chromatographic Retention Time prediction with Gaussian Procsses
License
statisticalbiotechnology/GPTime
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
GPTime python package ----------------------------------- 1.0 - Dependencies The GPTime package is now a python3 package and its dependencies can be installed via pip install -r requirements.txt 2.0 - Training To train a model using GPTime, you need a file containing the peptides and their recorded retention time. The content of the file should be organized as following : K.HLNICGTVGSIDNDMSTTDATIGAYSALDRICK.A 245.754 K.AANSVSQDSSYTDFSFTIAGTAHNAHSVTQSASK.V 184.938 K.FATVPTGGASSAAAGAAGAAAGGDAAEEEK.E 150.038 K.IGSGSFGDIYHGTNLISGEEVAIK.L 225.381 K.AASELRILYGGSANGSNAVTFK.D 191.693 K.DAGAISGLNVLRIINEPTAAAIAYGLGAGK.S 256.446 K.ATVDEFPLCVHLVSNELEQLSSEALEAARICANK.Y 256.898 K.GVLGYTEDAVVSSDFLGDSHSSIFDASAGIQLSPK.F 255.529 K.VNLQISDGQPTMCQLEQDYQASDFSVNVK.T 253.647 K.ISAVSTYFESFPYRVNPETGIIDYDTLEK.N 255.285 K.VTDCGDFSYTDLDGSVSDHQGLYVK.L 199.155 K.IPAVEYFGGESPVDVQSQVDSSSVSEDSAVFK.A 252.335 Different training files that were used in our paper can be found in ./Data . Following command line is an example of how a model is trained. The output model is saved to model.pk . python train.py --peptides GPTime/data/20110922_EXQ4_NaNa_SA_YeastEasy_Labelfree_06.rtimes_q_0.001.tsv --model ./model.pkl --ntrain 1000 This model is trained over the first 1000 peptides of the data file GPTime/data/20110922_EXQ4_NaNa_SA_YeastEasy_Labelfree_06.rtimes_q_0.001.tsv and is saved to ./model.pkl . 3.0 - Prediction Similarly to predict the retention time for the content of a file : python test.py --peptides GPTime/data/20110922_EXQ4_NaNa_SA_YeastEasy_Labelfree_06.rtimes_q_0.001.tsv --model ./model.pkl This way, we calculate the RT time and Predictive Standard deviation of the peptides in the file using the model ./model.pkl . The output of this process for each row is as following : peptide actual_rt predicted_rt predicted_variance predicted_std
About
Chromatographic Retention Time prediction with Gaussian Procsses
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published