Warning
This repository is deprecated. Please refer to post-rs for the most recent implementation.
A C library implementing the POST API setup method for general-purpose CPUs and for CUDA and Vulkan compute processors.
Windows 10/11, macOS or Linux. One or more of the following:
- A GPU and drivers with CUDA support (minimum compute compatibility 5.0, maximum compute compatibility 9), such as a modern Nvidia GPU and Nvidia drivers version R525 or newer.
- A GPU and drivers with Vulkan 1.3 support such as a modern AMD, Apple M1 processor, and Intel GPUs.
- A x86-64 cpu such as AMD or Intel CPUs.
- A ARM 64 bit cpu such as Apple Silicon or Ampere Altra
- Both discrete and on-board GPUs are supported as long as they support the minimum CUDA or Vulkan runtime version.
We currently provide release binaries and build instructions for Windows, Mac and Ubuntu 22.04 but the library can be built on other Linux distros for usage on these systems.
- 16 KiB per CUDA core for CUDA
- 4 MiB per compute unit for Vulkan
- 2080 MiB
On Linux platforms with Hybrid Nvidia GPU setup please use Nvidia driver R525 or newer. Older ones are known to have compatibility issues. Non hybrid cards are confirmed to be working with R520 and older versions.
- For building CUDA support: NVIDIA Cuda Toolkit 11, an NVIDIA GPU with CUDA support, and an Nvdia driver version R525 or newer.
- If building on Linux you should refer to the distribution preferred method installation if available
- For building Vulkan support: Vulkan SDK 1.3 and a GPU with Vulkan 1.3 runtime support.
- Windows 10/11.
- Microsoft Visual Studio 2022
- You may also need to install specific versions of the Windows SDK when prompted when attempting to build the library for the first time.
- Ubuntu 22.04
- Cmake, GCC 11+
- Cmake, GCC 11+
- Xcode
- Xcode Command Line Dev Tools
- Cmake, GCC 11+
- Install latest version of Xcode with the command line dev tools.
- Download the Vulkan 1.3 sdk installer for macOS from https://vulkan.lunarg.com/sdk/home#mac
- Install Vulkan SDK with the Vulkan installer.
- Change directory to the folder where the SDK is installed (default
$ cd $HOME/VulkanSDK/1.3.xxx
) and run the install script with$ sudo ./install_vulkan.py
- Add the Vulkan env vars to your
.bash_profile
file with the root location set to the sdk directory on your hard-drive. For example, if Vulkan sdk 1.2.154 is installed then the env vars should be set like this:
export VULKAN_SDK_VERSION="1.3.xxx" # Replace xxx with actual version
export VULKAN_ROOT_LOCATION="$HOME/VulkanSDK/1.3.xxx" # adapt to install location on your machine
export VULKAN_SDK="$VULKAN_ROOT_LOCATION/macOS"
export VK_ICD_FILENAMES="$VULKAN_SDK/share/vulkan/icd.d/MoltenVK_icd.json"
export VK_LAYER_PATH="$VULKAN_SDK/share/vulkan/explicit_layers.d"
export PATH="/usr/local/opt/python/libexec/bin:$VULKAN_SDK/bin:$PATH"
export DYLD_LIBRARY_PATH="$DYLD_LIBRARY_PATH:$VULKAN_SDK/lib/"
Default build configuration:
SPACEMESHCUDA "Build with CUDA support" default: ON
SPACEMESHVULKAN "Build with Vulkan support" default: ON
SPACEMESHCUDA "Build with CUDA support" default: OFF
SPACEMESHVULKAN "Build with Vulkan support" default: ON
To build the library with full support for both CUDA and Vulkan on Windows or on Linux use a system with an Nvidia GPU and drivers. Otherwise, turn off CUDA support and build for Vulkan only. Building on macOS only supports Vulkan.
- Open project folder into Visual Studio 2022:
File -> Open -> Folder
. - Set
x64-Release
Project Settings. - Build:
CMake -> Rebuild All
. - Run test:
CMake -> Debug from Build Folder -> gpu-setup-test.exe
If using VULKAN, make sure to clone the zlib submodule:
git submodule update --init
Configure your build using the default configuration:
cmake -B build
To disable CUDA use:
cmake -B build -DSPACEMESHCUDA=OFF
To disable VULKAN use:
cmake -B build -DSPACEMESHVULKAN=OFF
Build the project:
cmake --build build
Run the tests:
./build/test/gpu-setup-test -t
./build/test/gpu-setup-test -u
./build/test/gpu-setup-test -b
- Since the test app is not notarized, you may need to enable it via
spctl --add /path/to/gpu-setup-test
or by right-click-open it and clickopen
. - Set execute permissions if not already set, e.g.,
chmod a+x gpu-setup-test
- Add the test app's path to the dynamic lib search path, e.g.,
export DYLD_LIBRARY_PATH=.
- Set execute permissions if not already set, e.g.,
chmod a+x gpu-setup-test
- Add the test app's path to the dynamic lib search path, e.g.,
export LD_LIBRARY_PATH=.
Run from the console to print usage:
$ gpu-setup-test
Usage:
--list or -l print available providers
--benchmark or -b run benchmark
--core or -c test the core library use case
--test or -t run basic test
--test-vector-check run a CPU test and compare with test-vector
--test-pow or -tp test pow computation
--test-leafs-pow or -tlp test pow computation while computing leafs
--unit-tests or -u run unit tests
--integration-tests or -i run integration tests
--label-size or -s <1-256> set label size [1-256]
--labels-count or -n <1-32M> set labels count [up to 32M]
--reference-provider or -r <id> the result of this provider will be used as a reference [default - CPU]
--print or -p print detailed data comparison report for incorrect results
--pow-diff or -d <0-256> count of leading zero bits in target D value [default - 16]
--srand-seed or -ss <unsigned int> set srand seed value for POW test: 0 - use zero id/seed [default], -1 - use random value
--solution-idx or -si <unsigned int> set solution index for POW test: index will be compared to be the found solution for Pow [default - unset]
By default, the library does not detect supported Vulkan GPUs if CUDA GPUs are detected. This behavior can be changed using two environment variables:
SPACEMESH_DUAL_ENABLED
empty or 0 - default behavior
1 - detect Vulkan GPUs even if CUDA GPUs are detected
SPACEMESH_PROVIDERS_DISABLED
empty - default behavior
"cuda" - do not detect CUDA GPUs
"vulkan" - do not detect Vulkan GPUs
The library supports multiple compute providers at runtime. For best performance, use the following providers based on your OS and GPU:
OS / GPU | Windows | Linux | macOS |
---|---|---|---|
Nvidia | CUDA | CUDA | Vulkan |
AMD | Vulkan | Vulkan | Vulkan |
Intel | Vulkan | Vulkan | Vulkan |
Apple M1 | Vulkan | Vulkan | Vulkan |
Compute leaves and/or pow solution:
int scryptPositions(
uint32_t provider_id, // POST compute provider ID
const uint8_t *id, // 32 bytes
uint64_t start_position, // e.g. 0
uint64_t end_position, // e.g. 49,999
uint32_t hash_len_bits, // (1...256) for each hash output, the number of prefix bits (not bytes) to copy into the buffer
const uint8_t *salt, // 32 bytes
uint32_t options, // compute leafs and/or compute pow
uint8_t *out, // memory buffer large enough to include hash_len_bits * number of requested hashes
uint32_t N, // scrypt N
uint32_t R, // scrypt r
uint32_t P, // scrypt p
uint8_t *D, // Target D for the POW computation. 256 bits.
uint64_t *idx_solution, // index of output where output < D if POW compute was on. MAX_UINT64 otherwise.
uint64_t *hashes_computed, // The number of hashes computed, should be equal to the number of requested hashes.
uint64_t *hashes_per_sec // Performance
);
The api currently only supports the following N, P, R scrypt params.
- Supported N values: 1 - 28835
- Supported R values: 1
- Supported P values: 1
Gets the system's GPU capabilities. E.g. CUDA and/or NVIDIA or NONE:
int stats();
Stops all GPU work and don’t fill the passed-in buffer with any more results:
int stop(
uint32_t ms_timeout // timeout in milliseconds
);
Returns non-zero if stop in progress:
SPACEMESHAPI int spacemesh_api_stop_inprogress();
Returns POS compute providers info:
SPACEMESHAPI int spacemesh_api_get_providers(
PostComputeProvider *providers, // out providers info buffer, if NULL - returns count of available providers
int max_providers// buffer size
);
- Download release artifacts from a github release in this repo for your platform or build the artifacts from source code.
- Copy all artifacts to your project resources directory. The files should be included in your app's runtime resources.
- Use api.h to link the library from your code.
Integration test of the basic library use case in a Spacemesh full node to generate proof of space and find a pow solution:
/build/test/.gpu-setup-test -c -n 100663296 -d 20
Disclaimer: these are community submitted benchmarks which haven't been verified. Your milage may vary. The library is also likely to have bugs, is in alpha quality and the gpu-post algorithm is likely to change before the release of the Spacemesh 0.2 testnet.
gpu-setup-test -b -n 2000000
Date | Reporter | Release | Compute Provider | OS & CPU | Type | Driver | mh/s |
---|---|---|---|---|---|---|---|
06/21/2021 | Obsidian | v0.1.20 | Geforce RTX 2080ti 11GB @ stock (1350 mhz / 7000 mhz) | Windows 10 Pro v20H2, Build 19042.985, Intel i7-6700K @ 4.6ghz (HT enabled: 4c/8t) | CUDA | NVIDIA 466.11 | 2.56 |
06/22/2021 | Scerbera | v0.1.20 | Geforce RTX 2060 SUPER | Windows 10 | CUDA | NVIDIA 466.11 | 1.7 |
06/22/2021 | Scerbera | v0.1.20 | AMD Radeon Pro WX 7100 | Windows 10 | CUDA | NVIDIA 466.11 | 0.88 |
06/22/2021 | Scerbera | v0.1.20 | RX VEGA 64 - Core Clock 1500 MHz - Memory Clock 960MHz | Intel i7-8700K Windows 10 | Vulkan | Pro 20.Q4 | 0.9 |
06/22/2021 | Scerbera | v0.1.20 | WX7100 - Core Clock 1250MHz - Memory Clock 1700 MHz | Intel i7-8700K Windows 10 | Vulkan | Pro 20.Q4 | 0.87 |
06/28/2021 | cmoetzing | v0.1.20 | MSI GeForce RTX 2060 VENTUS GP OC - Core Clock 1365MHz - Memory Clock 1750 MHz | Ubuntu 20.04 Core i5-11600k | CUDA | NVIDIA 465.19.01 | 1.36 |
06/29/2021 | avive | v0.1.21 | GeForce RTX 3090 | Ubuntu 20.04 | CUDA | Nvidia 460.80 | 4.97 |
06/29/2021 | avive | v0.1.21 | GeForce RTX 3080 | Ubuntu 20.04 | CUDA | Nvidia 460.80 | 4.08 |
06/30/2021 | shanyaa | v0.1.21 | GeForce RTX 3070 @ 1.9 Ghz core, 6.8 Ghz mem | Windows 10 / AMD Ryzen 5800X | CUDA | Nvidia 466.63 | 2.7 |
06/30/2021 | shanyaa | v0.1.21 | GeForce RTX 3070 @ 2 Ghz core, 8.08 Ghz mem | Windows 10 / AMD Ryzen 5800X | CUDA | Nvidia 466.63 | 3.43 |
07/01/2021 | avive | v0.1.21 | Nvdia CMP 30HX | Ubuntu 20.04.2 LTS | CUDA | Nvidia 460.80 | 1.45 |
07/01/2021 | avive | v0.1.21 | GeForce RTX 2060 | Ubuntu 20.04.2 LTS | CUDA | Nvidia 465.27 | 1.56 |
07/01/2021 | shanyaa | v0.1.21 | Intel Iris Xe (integrated graphics) | Windows 10 / Intel core i7 1165G7 | Vulkan | Intel 27.20.100.9565 | 0.28 |
07/03/2021 | neodied | v0.1.21 | Radeon 5700XT @ 1333 MHz core, 1824 MHz mem | Windows 10 / Intel core i7 9700K | Vulkan | AMD Radeon Software 21.6.1 | 1.38 |
07/03/2021 | neodied | v0.1.21 | Radeon 5700XT @ 2016 MHz core, 1748 MHz mem | Windows 10 / Intel core i7 9700K | Vulkan | AMD Radeon Software 21.6.1 | 1.87 |
12/21/2022 | lane | v0.1.28 | Apple M1 (built-in, 8 cores, Metal 3) | macOS 13.1 | Vulkan | N/A | 0.15 |
01/27/2023 | lane | v0.1.28 | Apple M2 Pro (built-in, 16 GPU cores, Metal 3) | macOS 13.2 | Vulkan | N/A | 0.56 |
01/27/2023 | nj | v0.1.28 | Apple M2 Pro (built-in, 19 GPU cores, Metal 3) | macOS 13.2 | Vulkan | N/A | 0.57 |
Scrypt Benchmarks (n=512, r=1, p=1) 1 byte per leaf, batch size leaves per API call.
Date | Reporter | impl | cpu / gpu | Host OS | notes | kh/s | mh/s | x factor over 1 4ghz cpu native thread | x factor over 12 4ghz cpu native threads |
---|---|---|---|---|---|---|---|---|---|
11/19/2019 | ae | go-scrypt | mbp + Intel i9 @ 2.9ghz - 1 core | OS X | go scrypt crypto lib (not scrypt-jane) | 7 | 0.01 | 1 | 1 |
11/19/2019 | ae | sm-scrypt | Ryzen 5 2600x @ 4ghz - 1 core | Windows 10 | scrypt-jane c code | 7 | 0.01 | 1 | 1 |
11/19/2019 | ae | sm-scrypt | Nvidia Geforce RTX 2070 8GB | Windows 10 | pre-optimized prototype | 1,920 | 1.92 | 290 | 24.17 |
11/19/2019 | ae | sm-scrypt | AMD Radeon RX 580 | Windows 10 | pre-optimized prototype | 500 | 0.50 | 76 | 6.29 |
11/19/2019 | ar | sm-scrypt | Nvidia GTX 1060 6G | Windows 10 | pre-optimized prototype | 979 | 0.98 | 148 | 12.32 |
11/19/2019 | ar | sm-scrypt | AMD Radeon 570 4GB | Windows 10 | pre-optimized prototype | 355 | 0.36 | 54 | 4.47 |
11/12/2019 | ae | sm-scrypt | AMD Radeon RX 580 | Windows 10 | optimized prototype | 926 | 0.93 | 140 | 11.65 |
11/12/2019 | ae | sm-scrypt | AMD Radeon RX 580 | Ubuntu 18.0.4.3 LTS | optimized prototype | 893 | 0.89 | 135 | 11.24 |
11/12/2019 | ae | sm-scrypt | Nvidia Geforce RTX 2070 8GB | Ubuntu 19.10 LTS | optimized prototype | 1,923 | 1.92 | 292 | 24.37 |
01/22/2020 | seagiv | sm-scrypt | Nvidia GTX 1060 6G | Windows 10 | vulkan pre-optimized prototype | 276 | |||
01/22/2020 | seagiv | sm-scrypt | AMD Radeon 570 4GB | Windows 10 | vulkan pre-optimized prototype | 269 | |||
01/27/2020 | seagiv | sm-scrypt | Nvidia GTX 1060 6G | Windows 10 | vulkan optimized prototype | 642 | |||
01/27/2020 | seagiv | sm-scrypt | AMD Radeon 570 4GB | Windows 10 | vulkan optimized prototype | 966 | |||
01/29/2020 | seagiv | sm-scrypt | AMD Radeon Pro 555x 4GB | macOS 10.14.6 | vulkan optimized prototype | 266 | |||
01/31/2020 | avive | sm-scrypt | AMD Radeon Pro 560x 4GB | macOS 10.14.6 | vulkan optimized prototype | 406 | |||
01/31/2020 | avive | sm-scrypt | Intel(R) UHD Graphics 630 1536MB | macOS 10.14.6 | vulkan optimized prototype | 53 | |||
05/06/2020 | avive | sm-scrypt | AMD Radeon RX 580 | Windows 10 | vulkan optimized prototype | 1,074 | 1.074 | ||
09/08/2020 | avive | sm-scrypt | Nvidia Tesla V 100 (16GB) | Ubuntu 20.04 NVIDIA-SMI 450.51.06 CUDA Version: 11.0 | CUDA optimized prototype | 4,166 | 4.166 | ||
09/08/2020 | avive | sm-scrypt | Nvidia Tesla T4 (16GB) | Ubuntu 20.04 NVIDIA-SMI 450.51.06 CUDA Version: 11.0 | CUDA optimized prototype | 1,252 | 1.252 | ||
09/08/2020 | avive | sm-scrypt | Nvidia Tesla P100-PCIE (32GB) | Ubuntu 20.04 NVIDIA-SMI 450.51.06 CUDA Version: 11.0 | CUDA optimized prototype | 2,083 | 2.083 | ||
09/08/2020 | avive | sm-scrypt | Nvidia Tesla P4 (32GB) | Ubuntu 20.04 NVIDIA-SMI 450.51.06 CUDA Version: 11.0 | CUDA optimized prototype | 757 | 0.75 | ||
04/04/2020 | avive | sm-scrypt | Apple M1 | MacOS 11.2 | vulkan optimized prototype | 214 | 0.214 | ||
04/21/2020 | avive | sm-scrypt | Nvidia RTX 2070 Super, 8GB | Ubuntu 20.04, Driver 460.73.01 | CUDA optimized prototype | 2,038 | 2.038 |
The library performance on a GPU depends on the GPU's CUDA and Vulkan performance. The following benchmarks are available from geekbench: