Skip to content

Code for "How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks"

Notifications You must be signed in to change notification settings

smileformylove/LVAE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 

Repository files navigation

Probabilistic Ladder

Code to run experiments in

Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K. and Winther, O., 2016.
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks.
arXiv preprint arXiv:1602.02282.

The code is not well documented at the moment, please feel free to ask questions by writing me an email or creating a github-issue.

Example

To run a VAE model with 3 layers of stochastic units, each connected by a two-layer MLP:

VAE: X->MLP->Z1->MLP->Z2->MLP->Z3->MLP->Z2->MLP->Z1->MLP->Xrecon

python run_models.py \
	-lr 0.00020 \
	-modeltype VAE \
	-batch_size 256 \
	-dataset mnistresample \
	-mlp_layers 2 \
	-latent_sizes 64,32,16 \
	-hidden_sizes 512,256,128 \
	-nonlin_dec leaky_rectify \
	-nonlin_enc leaky_rectify \
	-only_mu_up True \
	-eq_samples 1 \
	-iw_samples 1 \
	-ramp_n_samples True \
	-batch_norm True \
	-batch_norm_output False \
	-temp_start 0.00 -temp_epochs 200 \
	-num_epochs 2000 -eval_epochs 100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000 \
	-ladder_share_params False \
	-only_mu_up True \
	-lv_eps_z 1e-5 \
	-lv_eps_out 1e-5 \
	-outfolder results/mnistresample_VAE

Corresponding ladderVAE model

python run_models.py \
	-lr 0.00020 \
	-modeltype ladderVAE \
	-batch_size 256 \
	-dataset mnistresample \
	-mlp_layers 2 \
	-latent_sizes 64,32,16 \
	-hidden_sizes 512,256,128 \
	-nonlin_dec leaky_rectify \
	-nonlin_enc leaky_rectify \
	-only_mu_up True \
	-eq_samples 1 \
	-iw_samples 1 \
	-ramp_n_samples True \
	-batch_norm True \
	-batch_norm_output False \
	-temp_start 0.00 -temp_epochs 200 \
	-num_epochs 2000 -eval_epochs 100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000 \
	-ladder_share_params False \
	-only_mu_up True \
	-lv_eps_z 1e-5 \
	-lv_eps_out 1e-5 \
	-outfolder results/mnistresample_ladderVAE

About

Code for "How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%