Skip to content

Commit

Permalink
fix mistaken autoformatting
Browse files Browse the repository at this point in the history
  • Loading branch information
KristianHolme committed Oct 25, 2024
1 parent 6385194 commit 9e62784
Showing 1 changed file with 25 additions and 25 deletions.
50 changes: 25 additions & 25 deletions src/extras/spectral_normalization.jl
Original file line number Diff line number Diff line change
@@ -1,29 +1,29 @@
# Power iteration algorithm for computing the spectral norm
function power_iteration!(W, u, n_iterations)
v = nothing
for i = 1:n_iterations
Wu = W' * u
v = Wu ./ (norm(Wu) + eps(Float32))
Wv = W * v
u .= Wv ./ (norm(Wv) + eps(Float32))
end
u, v
v = nothing
for i=1:n_iterations
Wu = W' * u
v = Wu ./ (norm(Wu) + eps(Float32))
Wv = W * v
u .= Wv ./ (norm(Wv) + eps(Float32))
end
u, v
end

# Compute the maximum singular value
msv(u, v, W) = u' * W * v


## Dense Layer with Spectral Normalization
struct DenseSN{F,S<:AbstractMatrix,B,I<:Int,VV<:AbstractArray}
struct DenseSN{F,S<:AbstractMatrix, B, I<:Int, VV<:AbstractArray}
weight::S
bias::B
σ::F
n_iterations::I # Number of power iterations for computing max singular value
u::VV # Left vector for power iteration
function DenseSN(W::M, bias=true, σ::F=identity, n_iterations::I=1, u::VV=randn(Float32, size(W, 1), 1)) where {M<:AbstractMatrix,F,I<:Int,VV<:AbstractArray}
b = Flux.create_bias(W, bias, size(W, 1))
new{F,M,typeof(b),I,VV}(W, b, σ, n_iterations, u)
function DenseSN(W::M, bias=true, σ::F=identity, n_iterations::I=1, u::VV=randn(Float32, size(W,1), 1)) where {M<:AbstractMatrix, F, I<:Int, VV<:AbstractArray}
b = Flux.create_bias(W, bias, size(W,1))
new{F,M,typeof(b), I, VV}(W, b, σ, n_iterations, u)
end
end

Expand All @@ -38,10 +38,10 @@ Flux.trainable(a::DenseSN) = (a.weight, a.bias)
function (a::DenseSN)(x::AbstractVecOrMat)
W, b, σ = a.weight, a.bias, a.σ
u, v = ignore_derivatives(() -> power_iteration!(W, a.u, a.n_iterations))
σ.((W ./ msv(u, v, W)) * x .+ b)
σ.((W ./ msv(u, v, W))*x .+ b)
end

(a::DenseSN)(x::AbstractArray) = reshape(a(reshape(x, size(x, 1), :)), :, size(x)[2:end]...)
(a::DenseSN)(x::AbstractArray) = reshape(a(reshape(x, size(x,1), :)), :, size(x)[2:end]...)

function Base.show(io::IO, l::DenseSN)
print(io, "DenseSN(", size(l.weight, 2), ", ", size(l.weight, 1))
Expand All @@ -51,7 +51,7 @@ end


## Convluational layer with Spectral Normalization
struct ConvSN{N,M,F,A,V,I<:Int,VV<:AbstractArray}
struct ConvSN{N,M,F,A,V, I<:Int, VV<:AbstractArray}
σ::F
weight::A
bias::V
Expand All @@ -62,35 +62,35 @@ struct ConvSN{N,M,F,A,V,I<:Int,VV<:AbstractArray}
u::VV # Left vector for power iteration
end

function ConvSN(w::AbstractArray{T,N}, b::Union{Bool,AbstractVector{T}}, σ=identity;
stride=1, pad=0, dilation=1, n_iterations=1) where {T,N}
stride = Flux.expand(Val(N - 2), stride)
dilation = Flux.expand(Val(N - 2), dilation)
function ConvSN(w::AbstractArray{T,N}, b::Union{Bool, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1, n_iterations = 1) where {T,N}
stride = Flux.expand(Val(N-2), stride)
dilation = Flux.expand(Val(N-2), dilation)
pad = Flux.calc_padding(Conv, pad, size(w)[1:N-2], dilation, stride)
u = randn(Float32, size(to2D(w), 1), 1)
return ConvSN(σ, w, b, stride, pad, dilation, n_iterations, u)
end

function ConvSN(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ=identity;
init=Flux.glorot_uniform, stride=1, pad=0, dilation=1,
weight=Flux.convfilter(k, ch, init=init), bias=false, n_iterations=1) where {N}
ConvSN(weight, bias, σ, stride=stride, pad=pad, dilation=dilation, n_iterations=n_iterations)
function ConvSN(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = Flux.glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = Flux.convfilter(k, ch, init = init), bias = false, n_iterations = 1) where N
ConvSN(weight, bias, σ, stride = stride, pad = pad, dilation = dilation, n_iterations = n_iterations)
end

Flux.@functor ConvSN

Flux.trainable(a::ConvSN) = (a.weight, a.bias)

function (c::ConvSN)(x::AbstractArray)
σ, b = c.σ, reshape(c.bias, ntuple(_ -> 1, length(c.stride))..., :, 1)
σ, b = c.σ, reshape(c.bias, ntuple(_->1, length(c.stride))..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
u, v = ignore_derivatives(() -> power_iteration!(to2D(c.weight), c.u, c.n_iterations))
σ.(conv(x, c.weight ./ msv(u, v, to2D(c.weight)), cdims) .+ b)
end

function Base.show(io::IO, l::ConvSN)
print(io, "ConvSN(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight) - 1), "=>", size(l.weight, ndims(l.weight)))
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end

0 comments on commit 9e62784

Please sign in to comment.