-
Notifications
You must be signed in to change notification settings - Fork 97
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2334 from kif/2314_medfilt_ng_python
Python implementation of medfilt_ng
- Loading branch information
Showing
4 changed files
with
225 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -26,9 +26,10 @@ | |
__contact__ = "[email protected]" | ||
__license__ = "MIT" | ||
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" | ||
__date__ = "06/09/2024" | ||
__date__ = "14/11/2024" | ||
__status__ = "development" | ||
|
||
from collections.abc import Iterable | ||
import logging | ||
import warnings | ||
logger = logging.getLogger(__name__) | ||
|
@@ -46,6 +47,7 @@ | |
from ..utils import calc_checksum | ||
from ..containers import Integrate1dtpl, Integrate2dtpl, ErrorModel | ||
|
||
mf_dtype = numpy.dtype([('any', 'f4'),('sig', 'f4'),('var', 'f4'),('norm', 'f4')]) | ||
|
||
class CSRIntegrator(object): | ||
|
||
|
@@ -389,6 +391,120 @@ def sigma_clip(self, data, dark=None, dummy=None, delta_dummy=None, | |
# Here we return the standard deviation and not the standard error of the mean ! | ||
return Integrate1dtpl(self.bin_centers, avg, std, sum_sig, sum_var, sum_nrm, cnt, std, sem, sum_nrm2) | ||
|
||
def medfilt(self, data, dark=None, dummy=None, delta_dummy=None, | ||
variance=None, dark_variance=None, | ||
flat=None, solidangle=None, polarization=None, absorption=None, | ||
safe=True, error_model=None, | ||
normalization_factor=1.0, quantile=0.5 | ||
): | ||
""" | ||
Perform a median-filter/quantile mean in azimuthal space. | ||
The error is propagated according to: | ||
.. math:: | ||
signal = (raw - dark) | ||
variance = variance + dark_variance | ||
normalization = normalization_factor*(flat * solidangle * polarization * absortoption) | ||
count = number of pixel contributing | ||
Averaging is performed using the CSR representation of the look-up table on all | ||
arrays after sorting pixels by apparant intensity and taking only the selected ones | ||
based on quantiles and the length of the ensemble. | ||
:param dark: array of same shape as data for pre-processing | ||
:param dummy: value for invalid data | ||
:param delta_dummy: precesion for dummy assessement | ||
:param variance: array of same shape as data for pre-processing | ||
:param dark_variance: array of same shape as data for pre-processing | ||
:param flat: array of same shape as data for pre-processing | ||
:param solidangle: array of same shape as data for pre-processing | ||
:param polarization: array of same shape as data for pre-processing | ||
:param safe: Unused in this implementation | ||
:param error_model: Enum or str, "azimuthal" or "poisson" | ||
:param normalization_factor: divide raw signal by this value | ||
:param quantile: which percentile/100 use for cutting out quantil. | ||
can be a 2-tuple to specify a region to average out. | ||
By default, takes the median | ||
:return: namedtuple with "position intensity error signal variance normalization count" | ||
""" | ||
if isinstance(quantile, Iterable): | ||
q_start = min(quantile) | ||
q_stop = max(quantile) | ||
else: | ||
q_stop = q_start = quantile | ||
|
||
indptr = self._csr.indptr | ||
indices = self._csr.indices | ||
csr_data = self._csr.data | ||
csr_data2 = self._csr2.data | ||
|
||
error_model = ErrorModel.parse(error_model) | ||
|
||
prep = preproc(data, | ||
dark=dark, | ||
flat=flat, | ||
solidangle=solidangle, | ||
polarization=polarization, | ||
absorption=absorption, | ||
mask=None, | ||
dummy=dummy, | ||
delta_dummy=delta_dummy, | ||
normalization_factor=normalization_factor, | ||
empty=self.empty, | ||
split_result=4, | ||
variance=variance, | ||
dark_variance=dark_variance, | ||
dtype=numpy.float32, | ||
error_model=error_model, | ||
out=self.preprocessed) | ||
|
||
prep_flat = prep.reshape((-1, 4)) | ||
pixels = prep_flat[indices] | ||
|
||
work0 = numpy.zeros((indices.size,4), dtype=numpy.float32) | ||
work0[:, 0] = pixels[:, 0]/ pixels[:, 2] | ||
work0[:, 1] = pixels[:, 0] * csr_data | ||
work0[:, 2] = pixels[:, 1] * csr_data2 | ||
work0[:, 3] = pixels[:, 2] * csr_data | ||
work1 = work0.view(mf_dtype).ravel() | ||
|
||
size = indptr.size-1 | ||
signal = numpy.zeros(size, dtype=numpy.float64) | ||
norm = numpy.zeros(size, dtype=numpy.float64) | ||
norm2 = numpy.zeros(size, dtype=numpy.float64) | ||
variance = numpy.zeros(size, dtype=numpy.float64) | ||
cnt = numpy.zeros(size, dtype=numpy.int32) | ||
for i,start in enumerate(indptr[:-1]): | ||
stop = indptr[i+1] | ||
tmp = numpy.sort(work1[start:stop]) | ||
upper = numpy.cumsum(tmp["norm"]) | ||
last = upper[-1] | ||
lower = numpy.concatenate(([0],upper[:-1])) | ||
mask = numpy.logical_and(upper>=q_start*last, lower<=q_stop*last) | ||
tmp = tmp[mask] | ||
cnt[i] = tmp.size | ||
signal[i] = tmp["sig"].sum(dtype=numpy.float64) | ||
variance[i] = tmp["var"].sum(dtype=numpy.float64) | ||
norm[i] = tmp["norm"].sum(dtype=numpy.float64) | ||
norm2[i] = (tmp["norm"]**2).sum(dtype=numpy.float64) | ||
|
||
with warnings.catch_warnings(): | ||
warnings.simplefilter("ignore") | ||
avg = signal / norm | ||
std = numpy.sqrt(variance / norm2) | ||
sem = numpy.sqrt(variance) / norm | ||
# mask out remaining NaNs | ||
msk = norm <= 0 | ||
avg[msk] = self.empty | ||
std[msk] = self.empty | ||
sem[msk] = self.empty | ||
|
||
return Integrate1dtpl(self.bin_centers, avg, sem, signal, variance, norm, cnt, std, sem, norm2) | ||
|
||
@property | ||
def check_mask(self): | ||
return self.mask_checksum is not None | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -32,7 +32,7 @@ | |
__contact__ = "[email protected]" | ||
__license__ = "MIT" | ||
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" | ||
__date__ = "30/10/2024" | ||
__date__ = "14/11/2024" | ||
|
||
import sys | ||
import unittest | ||
|
@@ -96,6 +96,7 @@ | |
from . import test_uncertainties | ||
from . import test_ring_extraction | ||
from . import test_fiber_integrator | ||
from . import test_medfilt_engine | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
@@ -158,6 +159,7 @@ def suite(): | |
testsuite.addTest(test_uncertainties.suite()) | ||
testsuite.addTest(test_ring_extraction.suite()) | ||
testsuite.addTest(test_fiber_integrator.suite()) | ||
testsuite.addTest(test_medfilt_engine.suite()) | ||
return testsuite | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
#!/usr/bin/env python | ||
# coding: utf-8 | ||
# | ||
# Project: Azimuthal integration | ||
# https://github.com/silx-kit/pyFAI | ||
# | ||
# Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France | ||
# | ||
# Principal author: Jérôme Kieffer ([email protected]) | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in | ||
# all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
# THE SOFTWARE. | ||
|
||
"""Test suites for median filtering engines""" | ||
|
||
__author__ = "Jérôme Kieffer" | ||
__contact__ = "[email protected]" | ||
__license__ = "MIT" | ||
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" | ||
__date__ = "14/11/2024" | ||
|
||
import unittest | ||
import numpy | ||
import logging | ||
logger = logging.getLogger(__name__) | ||
from .utilstest import UtilsTest | ||
import fabio | ||
from .. import load | ||
|
||
|
||
class TestMedfilt(unittest.TestCase): | ||
"""Test Azimuthal median filtering results | ||
""" | ||
|
||
@classmethod | ||
def setUpClass(cls)->None: | ||
super(TestMedfilt, cls).setUpClass() | ||
cls.method = ["full", "csr", "python"] | ||
cls.img = fabio.open(UtilsTest.getimage("mock.tif")).data | ||
cls.ai = load({ "dist": 0.1, | ||
"poni1":0.03, | ||
"poni2":0.03, | ||
"detector": "Detector", | ||
"detector_config": {"pixel1": 1e-4, | ||
"pixel2": 1e-4, | ||
"max_shape": [500, 600], | ||
"orientation": 3}}) | ||
cls.npt = 100 | ||
|
||
@classmethod | ||
def tearDownClass(cls)->None: | ||
super(TestMedfilt, cls).tearDownClass() | ||
cls.method = cls.img =cls.ai =cls.npt =None | ||
|
||
|
||
def test_python(self): | ||
print(self.ai) | ||
method = tuple(self.method) | ||
ref = self.ai.integrate1d(self.img, self.npt, unit="2th_rad", method=method, error_model="poisson") | ||
print(ref.method) | ||
engine = self.ai.engines[ref.method].engine | ||
obt = engine.medfilt(self.img, | ||
solidangle=self.ai.solidAngleArray(), | ||
quantile=(0,1), # taking all Like this it works like a normal mean | ||
error_model="poisson") | ||
|
||
self.assertTrue(numpy.allclose(ref.radial, obt.position), "radial matches") | ||
self.assertTrue(numpy.allclose(ref.sum_signal, obt.signal), "signal matches") | ||
self.assertTrue(numpy.allclose(ref.sum_variance, obt.variance), "variance matches") | ||
self.assertTrue(numpy.allclose(ref.sum_normalization, obt.normalization), "normalization matches") | ||
self.assertTrue(numpy.allclose(ref.sum_normalization2, obt.norm_sq), "norm_sq matches") | ||
|
||
self.assertTrue(numpy.allclose(ref.intensity, obt.intensity), "intensity matches") | ||
self.assertTrue(numpy.allclose(ref.sigma, obt.sigma), "sigma matches") | ||
self.assertTrue(numpy.allclose(ref.std, obt.std), "std matches") | ||
self.assertTrue(numpy.allclose(ref.sem, obt.sem), "sem matches") | ||
|
||
|
||
|
||
def suite(): | ||
loader = unittest.defaultTestLoader.loadTestsFromTestCase | ||
testsuite = unittest.TestSuite() | ||
testsuite.addTest(loader(TestMedfilt)) | ||
return testsuite | ||
|
||
|
||
if __name__ == '__main__': | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite()) |