-
Notifications
You must be signed in to change notification settings - Fork 97
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
122 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -26,9 +26,10 @@ | |
__contact__ = "[email protected]" | ||
__license__ = "MIT" | ||
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" | ||
__date__ = "06/09/2024" | ||
__date__ = "13/11/2024" | ||
__status__ = "development" | ||
|
||
from collections.abc import Iterable | ||
import logging | ||
import warnings | ||
logger = logging.getLogger(__name__) | ||
|
@@ -46,6 +47,7 @@ | |
from ..utils import calc_checksum | ||
from ..containers import Integrate1dtpl, Integrate2dtpl, ErrorModel | ||
|
||
mf_dtype = numpy.dtype([('any', 'f4'),('sig', 'f4'),('var', 'f4'),('norm', 'f4')]) | ||
|
||
class CSRIntegrator(object): | ||
|
||
|
@@ -389,6 +391,125 @@ def sigma_clip(self, data, dark=None, dummy=None, delta_dummy=None, | |
# Here we return the standard deviation and not the standard error of the mean ! | ||
return Integrate1dtpl(self.bin_centers, avg, std, sum_sig, sum_var, sum_nrm, cnt, std, sem, sum_nrm2) | ||
|
||
def medfilt(self, data, dark=None, dummy=None, delta_dummy=None, | ||
variance=None, dark_variance=None, | ||
flat=None, solidangle=None, polarization=None, absorption=None, | ||
safe=True, error_model=None, | ||
normalization_factor=1.0, percentile=50 | ||
): | ||
""" | ||
Perform a median-filter/quantile mean in azimuthal space. | ||
If the error model is "azimuthal": the variance is the variance within a bin, | ||
which is refined at each iteration, can be costly ! | ||
Else, the error is propagated according to: | ||
.. math:: | ||
signal = (raw - dark) | ||
variance = variance + dark_variance | ||
normalization = normalization_factor*(flat * solidangle * polarization * absortoption) | ||
count = number of pixel contributing | ||
Integration is performed using the CSR representation of the look-up table on all | ||
arrays: signal, variance, normalization and count | ||
Formula for azimuthal variance from: | ||
https://dbs.ifi.uni-heidelberg.de/files/Team/eschubert/publications/SSDBM18-covariance-authorcopy.pdf | ||
:param dark: array of same shape as data for pre-processing | ||
:param dummy: value for invalid data | ||
:param delta_dummy: precesion for dummy assessement | ||
:param variance: array of same shape as data for pre-processing | ||
:param dark_variance: array of same shape as data for pre-processing | ||
:param flat: array of same shape as data for pre-processing | ||
:param solidangle: array of same shape as data for pre-processing | ||
:param polarization: array of same shape as data for pre-processing | ||
:param safe: Unused in this implementation | ||
:param error_model: Enum or str, "azimuthal" or "poisson" | ||
:param normalization_factor: divide raw signal by this value | ||
:param percentile: which percentile use for cutting out | ||
percentil can be a 2-tuple to specify a region to | ||
average out | ||
:return: namedtuple with "position intensity error signal variance normalization count" | ||
""" | ||
if isinstance(percentile, Iterable): | ||
q_start = 1e-2 * min(percentile) | ||
q_stop = 1e-2 * max(percentile) | ||
else: | ||
q_stop = q_start = 1e-2*percentile | ||
|
||
shape = data.shape | ||
indptr = self._csr.indptr | ||
indices = self._csr.indices | ||
|
||
|
||
error_model = ErrorModel.parse(error_model) | ||
if error_model is ErrorModel.NO: | ||
logger.error("No variance propagation is incompatible with sigma-clipping. Using `azimuthal` model !") | ||
error_model = ErrorModel.AZIMUTHAL | ||
|
||
prep = preproc(data, | ||
dark=dark, | ||
flat=flat, | ||
solidangle=solidangle, | ||
polarization=polarization, | ||
absorption=absorption, | ||
mask=None, | ||
dummy=dummy, | ||
delta_dummy=delta_dummy, | ||
normalization_factor=normalization_factor, | ||
empty=self.empty, | ||
split_result=4, | ||
variance=variance, | ||
dark_variance=dark_variance, | ||
dtype=numpy.float32, | ||
error_model=error_model, | ||
out=self.preprocessed) | ||
|
||
prep_flat = prep.reshape((-1, 4)) | ||
pixels = prep_flat[indices] | ||
|
||
work0 = numpy.zeros((indices.size,4), dtype=numpy.float32) | ||
work0[:, 0] = pixels[:, 0]/ pixels[:, 2] | ||
work0[:, 1] = pixels[:, 0] * self._csr.data | ||
work0[:, 2] = pixels[:, 0] * self._csr2.data | ||
work0[:, 3] = pixels[:, 0] * self._csr.data | ||
work1 = work0.view(mf_dtype).ravel() | ||
|
||
size = indptr.size-1 | ||
signal = numpy.zeros(size, dtype=numpy.float64) | ||
norm = numpy.zeros(size, dtype=numpy.float64) | ||
norm2 = numpy.zeros(size, dtype=numpy.float64) | ||
variance = numpy.zeros(size, dtype=numpy.float64) | ||
cnt = numpy.zeros(size, dtype=numpy.int32) | ||
for i,start in enumerate(indptr[:-1]): | ||
stop = indptr[i+1] | ||
tmp = numpy.sort(work1[start:stop]) | ||
upper = numpy.cumsum(tmp["norm"]) | ||
last = upper[-1] | ||
lower = numpy.concatenate(([0],upper[:-1])) | ||
mask = numpy.logical_and(upper>=q_start*last, lower<=q_stop*last) | ||
tmp = tmp[mask] | ||
cnt[i] = tmp.size | ||
signal[i] = tmp["sig"].sum(dtype=numpy.float64) | ||
variance[i] = tmp["var"].sum(dtype=numpy.float64) | ||
norm[i] = tmp["norm"].sum(dtype=numpy.float64) | ||
norm2[i] = (tmp["norm"]**2).sum(dtype=numpy.float64) | ||
|
||
avg = signal / norm | ||
std = numpy.sqrt(variance / norm2) | ||
sem = numpy.sqrt(variance) / norm | ||
# mask out remaining NaNs | ||
msk = norm <= 0 | ||
avg[msk] = self.empty | ||
std[msk] = self.empty | ||
sem[msk] = self.empty | ||
|
||
return Integrate1dtpl(self.bin_centers, avg, std, signal, variance, norm, cnt, std, sem, norm2) | ||
|
||
@property | ||
def check_mask(self): | ||
return self.mask_checksum is not None | ||
|