Skip to content

Commit

Permalink
Merge branch 'langchain-ai:master' into master
Browse files Browse the repository at this point in the history
  • Loading branch information
ShorthillsAI authored Oct 16, 2023
2 parents 7f6c0e1 + 25b1d65 commit b4edc3a
Show file tree
Hide file tree
Showing 440 changed files with 22,187 additions and 13,518 deletions.
4 changes: 4 additions & 0 deletions .github/workflows/scheduled_test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,10 @@ jobs:
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
run: |
make scheduled_tests
Expand Down
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -177,3 +177,4 @@ docs/api_reference/*/
docs/docs/build
docs/docs/node_modules
docs/docs/yarn.lock
_dist
9 changes: 7 additions & 2 deletions .readthedocs.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,14 @@ build:
os: ubuntu-22.04
tools:
python: "3.11"
jobs:
pre_build:
commands:
- python -mvirtualenv $READTHEDOCS_VIRTUALENV_PATH
- python -m pip install --upgrade --no-cache-dir pip setuptools
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
- python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
- python docs/api_reference/create_api_rst.py
- cat docs/api_reference/conf.py
- python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference $READTHEDOCS_OUTPUT/html -j auto

# Build documentation in the docs/ directory with Sphinx
sphinx:
Expand Down
363 changes: 363 additions & 0 deletions cookbook/LLaMA2_sql_chat.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fc935871-7640-41c6-b798-58514d860fe0",
"metadata": {},
"source": [
"## LLaMA2 chat with SQL\n",
" \n",
"This Cookbook shows how to use LangChain's `SQLDatabaseChain` with LLaMA2 to chat about structured data stored in a SQL DB. \n",
"\n",
"* As the 2023-24 NBA season is around the corner, we use the NBA roster info saved in a SQLite DB to show you how to ask Llama2 questions about your favorite teams or players. \n",
"\n",
"* Because the SQLDatabaseChain API implementation is still in the langchain_experimental package, you'll see more issues that come with using the cutting edge experimental features, and how we succeed resolving some of the issues but fail on some others."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "81adcf8b-395a-4f02-8749-ac976942b446",
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain replicate langchain_experimental"
]
},
{
"cell_type": "markdown",
"id": "8e13ed66-300b-4a23-b8ac-44df68ee4733",
"metadata": {},
"source": [
"## LLM\n",
"\n",
"Use Replicate API for llama-2-13b-chat."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "416ecce7-8aec-4145-b3f1-587a9b8a4fe9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Init param `input` is deprecated, please use `model_kwargs` instead.\n"
]
}
],
"source": [
"from getpass import getpass\n",
"from langchain.llms import Replicate\n",
"# REPLICATE_API_TOKEN = getpass()\n",
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
"\n",
"# Replicate API\n",
"llama2_13b_chat = \"meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d\"\n",
"\n",
"# Set the system_prompt so that LLaMA will generate only the SQL statement, instead of being wordy and adding something like\n",
"# \"Sure! Here's the SQL query for the given input question: \" before the SQL query; otherwise custom parsing will be needed.\n",
"llm = Replicate(\n",
" model=llama2_13b_chat,\n",
" input={\"temperature\": 0.01, \n",
" \"max_length\": 500, \n",
" \"top_p\": 1}\n",
")"
]
},
{
"cell_type": "markdown",
"id": "80222165-f353-4e35-a123-5f70fd70c6c8",
"metadata": {},
"source": [
"## DB\n",
"\n",
"Connect to a SQL DB, which in this case is in this same directory."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "025bdd82-3bb1-4948-bc7c-c3ccd94fd05c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabase\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info= 0)\n",
"\n",
"def get_schema(_):\n",
" return db.get_table_info()\n",
"\n",
"def run_query(query):\n",
" return db.run(query)"
]
},
{
"cell_type": "markdown",
"id": "654b3577-baa2-4e12-a393-f40e5db49ac7",
"metadata": {},
"source": [
"## Query a SQL DB \n",
"\n",
"Follow the workflow [here](https://python.langchain.com/docs/expression_language/cookbook/sql_db)."
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "5a4933ea-d9c0-4b0a-8177-ba4490c6532b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" SELECT * FROM nba_roster WHERE NAME = 'Klay Thompson';\""
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Prompt\n",
"from langchain.prompts import ChatPromptTemplate\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"\n",
"# Chain to query\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
" )\n",
"\n",
"sql_response.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
},
{
"cell_type": "markdown",
"id": "a0e9e2c8-9b88-4853-ac86-001bc6cc6695",
"metadata": {},
"source": [
"The [LangSmith trace](https://smith.langchain.com/public/afa56a06-b4e2-469a-a60f-c1746e75e42b/r) gives us visibility into the chain! "
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "2a2825e3-c1b6-4f7d-b9c9-d9835de323bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" Sure! Here's the natural language response based on the given SQL query and response:\\n\\nThere are 30 unique teams in the NBA roster.\""
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Chain to answer\n",
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response) \n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | llm\n",
")\n",
"\n",
"full_chain.invoke({\"question\": \"How many unique teams are there?\"})"
]
},
{
"cell_type": "markdown",
"id": "ec17b3ee-6618-4681-b6df-089bbb5ffcd7",
"metadata": {},
"source": [
"Again, the [LangSmith trace](https://smith.langchain.com/public/10420721-746a-4806-8ecf-d6dc6399d739/r) gives us visibility into the chain! "
]
},
{
"cell_type": "markdown",
"id": "1e85381b-1edc-4bb3-a7bd-2ab23f81e54d",
"metadata": {},
"source": [
"## Chat with a SQL DB \n",
"\n",
"Add memory!"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "1985aa1c-eb8f-4fb1-a54f-c8aa10744687",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"SELECT Team \\nFROM nba_roster \\nWHERE NAME = 'Klay Thompson'\""
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Prompt\n",
"from langchain.prompts import ChatPromptTemplate\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", template)\n",
"])\n",
"\n",
"memory = ConversationBufferMemory(return_messages=True)\n",
"\n",
"# Chain to query with memory \n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.schema.runnable import RunnableLambda, GetLocalVar, PutLocalVar\n",
"\n",
"sql_chain = (\n",
" RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" history=RunnableLambda(lambda x: memory.load_memory_variables(x)[\"history\"])\n",
" )| prompt\n",
" | model.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"def save(input_output):\n",
" output = {\"output\": input_output.pop(\"output\")}\n",
" memory.save_context(input_output, output)\n",
" return output['output']\n",
" \n",
"sql_response_memory = RunnablePassthrough.assign(output=sql_chain) | save\n",
"sql_response_memory.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "0b45818a-1498-441d-b82d-23c29428c2bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"SELECT SALARY \\nFROM nba_roster \\nWHERE NAME = 'Klay Thompson'\""
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sql_response_memory.invoke({\"question\": \"What is his salary?\"})"
]
},
{
"cell_type": "code",
"execution_count": 76,
"id": "800a7a3b-f411-478b-af51-2310cd6e0425",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" Sure thing! Here's the natural language response based on the given SQL query and response:\\n\\nKlay Thompson plays for the Golden State Warriors.\""
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Chain to answer\n",
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response_memory) \n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | llm\n",
")\n",
"\n",
"full_chain.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading

0 comments on commit b4edc3a

Please sign in to comment.