Skip to content

Acoustic Echo Cancellation with Nerual Kalman Filtering

Notifications You must be signed in to change notification settings

shenxiaozheng/NKF-AEC

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NKF-AEC

This is the official repository of our work "Low-Complexity Acoustic Echo Cancellation with Neural Kalman Filtering" [arXiv]. (Accepted by ICASSP 2023)
👉 More results are shown on our Demo website.

AEC Inference with the pre-trained model

The inference code and pre-trained model of NKF-AEC is released in the src folder. Try NKF-AEC by running:

python nkf.py -x ref.wav -y mic.wav -o res.wav

Note:

  • NKF-AEC is a linear acoustic echo canceller.
  • Time delay compensation (TDC) is necessary before running NKF if the time delay is significant (e.g., the ICASSP 2021 AEC challenge blind test set), which can be done by the GCC-PHAT algorithm, the audio fingerprinting technology, or the WebRtcAecm_AlignedFarend function in WebRTC. In such scenarios, just add the -a argument to the above command.
  • The training data of the pre-trained model are derived from a small part of the AEC challenge corpus, which is introduced in the paper.
  • The sampling rate of the audio is supposed to be 16 kHz.

Cite our work

If you find this repository helpful, please cite our work:

@article{
 yang2022low,
 title={Low-Complexity Acoustic Echo Cancellation with Neural Kalman Filtering},
 author={Yang, Dong and Jiang, Fei and Wu, Wei and Fang, Xuefei and Cao, Muyong},
 journal={arXiv preprint arXiv:2207.11388},
 year={2022}
}

About

Acoustic Echo Cancellation with Nerual Kalman Filtering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 79.5%
  • Python 20.3%
  • SCSS 0.2%