Skip to content

Commit

Permalink
lib/concurrency: update for changed prefix_refinement rules
Browse files Browse the repository at this point in the history
Signed-off-by: Corey Lewis <[email protected]>
  • Loading branch information
corlewis committed Mar 27, 2024
1 parent eb81722 commit 42a3759
Show file tree
Hide file tree
Showing 3 changed files with 59 additions and 62 deletions.
7 changes: 2 additions & 5 deletions lib/concurrency/Atomicity_Lib.thy
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ lemmas prefix_refinement_env_steps_Await =

lemma pfx_refn_interferences:
"env_stable AR R sr iosr (\<lambda>_. True)
\<Longrightarrow> prefix_refinement sr iosr iosr \<top>\<top> AR R \<top>\<top> \<top>\<top> interferences interferences"
\<Longrightarrow> prefix_refinement sr iosr iosr dc AR R \<top>\<top> \<top>\<top> interferences interferences"
apply (rule prefix_refinement_repeat)
apply (erule prefix_refinement_interference)
apply wp+
Expand Down Expand Up @@ -64,14 +64,12 @@ lemma repeat_pre_triv_refinement[simplified]:
apply (simp add: repeat_def select_early)
apply (rule triv_refinement_select_concrete_All; clarsimp)
apply (rule_tac x="Suc x" in triv_refinement_select_abstract_x; simp)
apply (rule triv_refinement_refl)
done

lemma repeat_none_triv_refinement:
"triv_refinement (repeat f) (return ())"
apply (simp add: repeat_def)
apply (rule_tac x="0" in triv_refinement_select_abstract_x; simp)
apply (rule triv_refinement_refl)
done

lemmas repeat_triv_refinement_consume_1 =
Expand Down Expand Up @@ -466,7 +464,6 @@ lemma rel_tr_refinement_bind_right_general:
apply (simp add: rely_cond_append list_all2_same reflpD[where R=sr] rel_prod_sel)
done

lemmas validI_triv' = rg_weaken_pre[OF validI_triv, simplified]
lemmas rel_tr_refinement_bind_right =
rel_tr_refinement_bind_right_general[where C'=False, simplified]

Expand Down Expand Up @@ -810,7 +807,7 @@ lemma adjust_tr_relation_equivp:
done

lemma prefix_refinement_i_modify_split:
"\<lbrakk>adjust_tr_relation tr_r sr; \<forall>s t. isr s t \<longrightarrow> P s \<longrightarrow> Q t \<longrightarrow> intsr (f s) (g t);
"\<lbrakk>adjust_tr_relation tr_r sr; \<And>s t. \<lbrakk>isr s t; P s; Q t\<rbrakk> \<Longrightarrow> intsr (f s) (g t);
\<forall>s. tr_r s (g s); \<forall>s t. R s t \<longrightarrow> R (g s) (g t); not_env_steps_first b;
prefix_refinement sr intsr osr rvr' AR R P' Q' d (do x \<leftarrow> interferences; b od)\<rbrakk>
\<Longrightarrow> prefix_refinement sr isr osr rvr' AR R (\<lambda>s0 s. P s \<and> P' s0 (f s)) (\<lambda>s0 s. Q s \<and> Q' s0 (g s))
Expand Down
53 changes: 26 additions & 27 deletions lib/concurrency/examples/Peterson_Atomicity.thy
Original file line number Diff line number Diff line change
Expand Up @@ -373,9 +373,9 @@ lemmas prefix_refinement_interference_peterson_cs1 =
prefix_refinement_interference[OF env_stable_peterson_sr_cs1]

lemmas prefix_refinement_bind_2left_2right
= prefix_refinement_bind[where a="bind a a'" and c="bind c c'" for a a' c c', simplified bind_assoc]
= prefix_refinement_bind[where a="Trace_Monad.bind a a'" and c="Trace_Monad.bind c c'" for a a' c c', simplified bind_assoc]
lemmas rel_tr_refinement_bind_left_general_2left_2right
= rel_tr_refinement_bind_left_general[where f="bind f f'" and g="bind g g'" for f f' g g',
= rel_tr_refinement_bind_left_general[where f="Trace_Monad.bind f f'" and g="Trace_Monad.bind g g'" for f f' g g',
simplified bind_assoc]

lemma peterson_rel_imp_invs:
Expand All @@ -393,7 +393,7 @@ lemma peterson_rel_set_label:
by (simp add: peterson_rel_def set_label_def)

lemma acquire_lock_refinement:
"prefix_refinement peterson_sr peterson_sr peterson_sr \<top>\<top>
"prefix_refinement peterson_sr peterson_sr peterson_sr dc
(peterson_rel (other_ident ident)) (peterson_rel (other_ident ident))
\<top>\<top> \<top>\<top>
(acquire_lock ident) (acquire_lock ident)"
Expand Down Expand Up @@ -429,12 +429,12 @@ lemma peterson_sr_ab_label:
by (simp add: peterson_sr_def)

lemma critical_section_refinement:
"prefix_refinement peterson_sr peterson_sr peterson_sr \<top>\<top>
"prefix_refinement peterson_sr peterson_sr peterson_sr dc
(peterson_rel (other_ident ident)) (peterson_rel (other_ident ident))
(\<lambda>_ s. invs s \<and> ab_label s ident = Critical) \<top>\<top>
abs_critical_section critical_section"
apply (simp add: abs_critical_section_def critical_section_def)
apply (rule prefix_refinement_weaken_pre)
apply pfx_refn_pre
apply (rule prefix_refinement_interferences_split)
apply (rule prefix_refinement_bind_sr)
apply (rule prefix_refinement_interference_peterson)
Expand All @@ -457,20 +457,20 @@ lemma critical_section_refinement:
apply (rule prefix_refinement_bind_sr)
apply (rule prefix_refinement_interference_peterson)
apply (rule prefix_refinement_bind[where intsr=peterson_sr_cs1])
apply (rule pfx_refn_modifyT)
apply (rule prefix_refinement_modifyT)
apply (clarsimp simp add: peterson_sr_def peterson_sr_cs1_def)
apply (rule prefix_refinement_bind_sr)
apply (rule cs_refine)
apply (rule prefix_refinement_interference_peterson)

apply (wpsimp wp: validI_triv[OF cs_closed])+
apply (wpsimp wp: cs_closed)+
apply (subst peterson_rel_imp_label[symmetric], assumption, simp)
apply (drule peterson_rel_imp_invs, simp)
apply (simp add: peterson_sr_ab_label)
done

lemma release_lock_refinement:
"prefix_refinement peterson_sr peterson_sr peterson_sr \<top>\<top>
"prefix_refinement peterson_sr peterson_sr peterson_sr dc
(peterson_rel (other_ident ident)) (peterson_rel (other_ident ident))
\<top>\<top> \<top>\<top>
(release_lock ident) (release_lock ident)"
Expand Down Expand Up @@ -532,7 +532,7 @@ lemma acquire_lock_prefix_closed[simp]:
simp: cs_closed acquire_lock_def)

theorem peterson_proc_refinement:
"prefix_refinement peterson_sr peterson_sr peterson_sr \<top>\<top>
"prefix_refinement peterson_sr peterson_sr peterson_sr dc
(peterson_rel (other_ident ident)) (peterson_rel (other_ident ident))
(\<lambda>_ s. invs s \<and> ab_label s ident = Exited)
(\<lambda>_ s. invs s \<and> ab_label s ident = Exited)
Expand All @@ -545,7 +545,7 @@ theorem peterson_proc_refinement:
apply (rule prefix_refinement_bind_sr)
apply (rule critical_section_refinement)
apply (rule release_lock_refinement)
apply (wpsimp wp: validI_triv acquire_lock_wp
apply (wpsimp wp: acquire_lock_wp
simp: pred_conj_def)+
done

Expand Down Expand Up @@ -597,18 +597,17 @@ lemma peterson_proc_mutual_excl_helper:
peterson_proc ident
\<lbrace>peterson_rel3 ident\<rbrace>,
\<lbrace>\<lambda>rv s0 s. peterson_rel3 ident s0 s \<and> invs s \<and> ab_label s ident = Exited\<rbrace>"
apply (rule prefix_refinement_validI')
apply (rule prefix_refinement_validI)
apply (rule peterson_proc_refinement)
apply (rule abs_peterson_proc_mutual_excl)
apply (clarsimp simp: peterson_sr_peterson_rel3 peterson_sr_ab_label)
apply (clarsimp simp: peterson_sr_peterson_rel3)
apply clarsimp
apply (rule_tac x=t0 in exI)
apply (rule_tac x="t \<lparr>cs1_v := cs1_v t0\<rparr>" in exI)
apply (clarsimp simp: peterson_rel_def peterson_sr_def)
apply clarsimp
apply (rule_tac x="t \<lparr>cs1_v := cs1_v s0\<rparr>" in exI)
apply (clarsimp simp: peterson_rel_def peterson_sr_def invs_def invs_defs)
apply clarsimp
apply (rule_tac x=t0 in exI)
apply (rule_tac x="t \<lparr>cs1_v := cs1_v t0\<rparr>" in exI)
apply (clarsimp simp: peterson_rel_def peterson_sr_def)
apply (rule_tac x="t \<lparr>cs1_v := cs1_v s0\<rparr>" in exI)
apply (clarsimp simp: peterson_rel_def peterson_sr_def invs_def invs_defs)
apply (clarsimp simp: peterson_sr_peterson_rel3)
apply (clarsimp simp: peterson_sr_peterson_rel3 peterson_sr_ab_label)
apply clarsimp
done

Expand Down Expand Up @@ -687,7 +686,7 @@ lemma abs_peterson_proc_prefix_closed[simp]:
simp: cs_closed abs_peterson_proc_def acquire_lock_def release_lock_def)

lemma peterson_repeat_refinement:
"prefix_refinement peterson_sr peterson_sr peterson_sr \<top>\<top>
"prefix_refinement peterson_sr peterson_sr peterson_sr dc
(peterson_rel (other_ident ident)) (peterson_rel (other_ident ident))
(\<lambda>s0 s. peterson_rel ident s0 s \<and> invs s \<and> ab_label s ident = Exited)
(\<lambda>s0 s. peterson_rel ident s0 s \<and> invs s \<and> ab_label s ident = Exited)
Expand All @@ -707,11 +706,11 @@ lemma peterson_repeat_refinement:
apply (rule peterson_proc_refinement[THEN prefix_refinement_weaken_pre])
apply simp+
apply (rule prefix_refinement_interference_peterson)
apply (wpsimp wp: validI_triv)+
apply wpsimp+
done

theorem peterson_proc_system_refinement:
"prefix_refinement peterson_sr peterson_sr peterson_sr \<top>\<top>
"prefix_refinement peterson_sr peterson_sr peterson_sr dc
(\<lambda>s0 s. s0 = s) (\<lambda>t0 t. t0 = t)
(\<lambda>s0 s. s0 = s \<and> invs s \<and> ab_label s = (\<lambda>_. Exited))
(\<lambda>t0 t. t0 = t \<and> invs t \<and> ab_label t = (\<lambda>_. Exited))
Expand Down Expand Up @@ -761,12 +760,12 @@ theorem peterson_proc_system_mutual_excl:
peterson_proc_system
\<lbrace>\<lambda>s0 s. invs s0 \<longrightarrow> invs s\<rbrace>,
\<lbrace>\<lambda>rv s0 s. invs s\<rbrace>"
apply (rule prefix_refinement_validI')
apply (rule prefix_refinement_validI)
apply (rule peterson_proc_system_refinement)
apply (rule abs_peterson_proc_system_mutual_excl)
apply clarsimp
apply (clarsimp simp: peterson_sr_invs_sym )
apply (fastforce simp: peterson_rel_def peterson_sr_def)
apply (fastforce simp: peterson_rel_def peterson_sr_def)
apply clarsimp
apply (clarsimp simp: peterson_sr_invs_sym )
apply clarsimp
apply (fastforce simp: peterson_sr_def)
done
Expand Down
61 changes: 31 additions & 30 deletions lib/concurrency/examples/Plus2_Prefix.thy
Original file line number Diff line number Diff line change
Expand Up @@ -117,9 +117,9 @@ abbreviation (input)
prefix_refinement (\<lambda>s t. t = mainv s) (\<lambda>s t. t = mainv s) (\<lambda>s t. t = mainv s) rvr AR R P Q"

theorem pfx_refn_plus2_x:
"p_refn (\<top>\<top>) AR R (=) (\<top>\<top>) (plus2_x tid) plus2"
"p_refn dc AR R (=) (\<top>\<top>) (plus2_x tid) plus2"
apply (simp add: plus2_x_def plus2_def)
apply (rule prefix_refinement_weaken_pre)
apply pfx_refn_pre
apply (rule pfx_refn_bind prefix_refinement_interference
prefix_refinement_env_steps pfx_refn_modifyT env_stable
| wpsimp)+
Expand All @@ -140,17 +140,17 @@ theorem plus2_parallel:
parallel plus2 plus2
\<lbrace>\<lambda>s0 s. True\<rbrace>,\<lbrace>\<lambda>_ s0 s. s = 4\<rbrace>"
apply (rule_tac sr="\<lambda>s t. t = mainv s" in prefix_refinement_validI)
apply (rule prefix_refinement_parallel_triv;
((rule par_tr_fin_plus2_x prefix_closed_plus2)?))
apply (rule pfx_refn_plus2_x[where tid=1])
apply (rule pfx_refn_plus2_x[where tid=2])
apply (rule prefix_refinement_parallel_triv;
((rule par_tr_fin_plus2_x prefix_closed_plus2 twp_post_taut)+)?)
apply (rule pfx_refn_plus2_x[where tid=1])
apply (rule pfx_refn_plus2_x[where tid=2])
apply (rule plus2_x_parallel)
apply clarsimp
apply (clarsimp simp: plus2_xstate.splits)
apply (strengthen exI[where x="f(1 := x, 2 := y)" for f x y])
apply simp
apply clarsimp
apply (rule rg_strengthen_post)
apply (rule plus2_x_parallel[simplified])
apply clarsimp
apply (clarsimp simp: plus2_xstate.splits)
apply (strengthen exI[where x="f(1 := x, 2 := y)" for f x y])
apply simp
apply clarsimp
apply clarsimp
apply (intro prefix_closed_parallel prefix_closed_plus2)
done
Expand Down Expand Up @@ -215,16 +215,16 @@ lemma bipred_disj_top_eq:
by auto

lemma fold_parallel_pfx_refn_induct:
"\<lbrakk>list_all2 (prefix_refinement sr sr sr (\<lambda>_ _. True) (\<top>\<top>) (\<top>\<top>) P Q) xs ys;
prefix_refinement sr sr sr (\<lambda>_ _. True) (\<top>\<top>) (\<top>\<top>) P Q x y;
"\<lbrakk>list_all2 (prefix_refinement sr sr sr dc (\<top>\<top>) (\<top>\<top>) P Q) xs ys;
prefix_refinement sr sr sr dc (\<top>\<top>) (\<top>\<top>) P Q x y;
\<forall>x \<in> set (x # xs). par_tr_fin_principle x;
\<forall>y \<in> set (y # ys). prefix_closed y\<rbrakk>
\<Longrightarrow> prefix_refinement sr sr sr (\<lambda>_ _. True) (\<top>\<top>) (\<top>\<top>) P Q
\<Longrightarrow> prefix_refinement sr sr sr dc(\<top>\<top>) (\<top>\<top>) P Q
(fold parallel (rev xs) x) (fold parallel (rev ys) y)"
apply (induct rule: list_all2_induct; simp)
apply (rule prefix_refinement_parallel_triv[simplified bipred_disj_top_eq]; simp?)
apply (clarsimp simp: fold_parallel_par_tr_fin_principle
fold_parallel_prefix_closed)+
fold_parallel_prefix_closed rg_TrueI)+
done

lemmas fold_parallel_pfx_refn =
Expand All @@ -236,22 +236,23 @@ theorem plus2_n_parallel:
fold parallel (replicate (n - 1) plus2) plus2
\<lbrace>\<lambda>s0 s. True\<rbrace>,\<lbrace>\<lambda>_ s0 s. s = n * 2\<rbrace>"
apply (rule_tac sr="\<lambda>s t. t = mainv s" in prefix_refinement_validI)
apply (rule prefix_refinement_weaken_rely,
rule_tac xs="map plus2_x [1 ..< n]" in fold_parallel_pfx_refn)
apply (clarsimp simp: list_all2_conv_all_nth)
apply (rule pfx_refn_plus2_x)
apply (rule pfx_refn_plus2_x[where tid=0])
apply (simp add: par_tr_fin_plus2_x)
apply (simp add: prefix_closed_plus2)
apply (simp add: le_fun_def)
apply (simp add: le_fun_def)
apply simp
apply (rule rg_strengthen_post, rule plus2_x_n_parallel[simplified], simp)
apply (rule prefix_refinement_weaken_rely,
rule_tac xs="map plus2_x [1 ..< n]" in fold_parallel_pfx_refn)
apply (clarsimp simp: list_all2_conv_all_nth)
apply (rule pfx_refn_plus2_x)
apply (rule pfx_refn_plus2_x[where tid=0])
apply (simp add: par_tr_fin_plus2_x)
apply (simp add: prefix_closed_plus2)
apply (simp add: le_fun_def)
apply (simp add: le_fun_def)
apply (rule plus2_x_n_parallel, simp)
apply clarsimp
apply (clarsimp simp: plus2_xstate.splits exI[where x="\<lambda>_. 0"])
apply clarsimp
apply (clarsimp simp: plus2_xstate.splits exI[where x="\<lambda>_. 0"])
apply (rule exI, strengthen refl)
apply (clarsimp simp: plus2_rel_def plus2_inv_def)
apply clarsimp
apply clarsimp
apply (rule exI, strengthen refl)
apply (clarsimp simp: plus2_rel_def plus2_inv_def)
apply (rule fold_parallel_prefix_closed)
apply (simp add: prefix_closed_plus2)
done
Expand Down

0 comments on commit 42a3759

Please sign in to comment.