Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
sametmemis authored Apr 10, 2021
1 parent 8722603 commit 279bbb0
Show file tree
Hide file tree
Showing 4 changed files with 235 additions and 0 deletions.
47 changes: 47 additions & 0 deletions ACmF.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Citation:
% S. Enginoğlu, U. Erkan, and S. Memiş, 2020. Adaptive Cesáro Mean Filter
% for Salt-and-Pepper Noise Removal, El-Cezeri Journal of Science and
% Engineering, 7(1), 304-314.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Abbreviation of Journal Title: El-Cezeri J. Sci. Eng.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://doi.org/10.31202/ecjse.646359
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://www.researchgate.net/profile/Serdar_Enginoglu2
% https://www.researchgate.net/profile/Ugur_Erkan
% https://www.researchgate.net/profile/Samet_Memis2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Demo:
% clc;
% clear all;
% io=imread("lena.tif");
% Noise_Image=imnoise(io,'salt & pepper',0.8);
% Denoised_Image=ACmF(Noise_Image);
% psnr_results=psnr(io,Denoised_Image);
% ssim_results=ssim(io,Denoised_Image);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function X=ACmF(A)
A=double(A);
for p=5:-1:1
pA=padarray(A,[p p],'symmetric');
pB=(pA~=0 & pA~=255);
[m,n]=size(pB);
for i=1+p:m-p
for j=1+p:n-p
if (pB(i,j)==0)
for k=1:p
if (isequal(pB(i-k:i+k,j-k:j+k),zeros(2*k+1,2*k+1))~=1)
R1=pA(i-k:i+k,j-k:j+k);
R2=R1(R1>0 & R1<255);
A(i-p,j-p)=mean(R2);
break;
end
end
end
end
end
end
X=uint8(A);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 changes: 7 additions & 0 deletions demo.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
clc;
clear all;
io=imread("lena.tif");
Noise_Image=imnoise(io,'salt & pepper',0.8);
Denoised_Image=ACmF(Noise_Image);
psnr_results=psnr(io,Denoised_Image);
ssim_results=ssim(io,Denoised_Image);
Binary file added lena.tif
Binary file not shown.
181 changes: 181 additions & 0 deletions ssim.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to [email protected]
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(img1) - size(window) + 1.
%
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%
%========================================================================


if (nargin < 2 | nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end

if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end

[M N] = size(img1);

if (nargin == 2)
if ((M < 11) | (N < 11)) % 图像大小过小,则没有意义。
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); % 参数一个标准偏差1.5,11*11的高斯低通滤波。
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = 255; %
end

if (nargin == 3)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end

if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end

if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
%%
C1 = (K(1)*L)^2; % 计算C1参数,给亮度L(x,y)用。
C2 = (K(2)*L)^2; % 计算C2参数,给对比度C(x,y)用。
window = window/sum(sum(window)); %滤波器归一化操作。
img1 = double(img1);
img2 = double(img2);

mu1 = filter2(window, img1, 'valid'); % 对图像进行滤波因子加权
mu2 = filter2(window, img2, 'valid'); % 对图像进行滤波因子加权

mu1_sq = mu1.*mu1; % 计算出Ux平方值。
mu2_sq = mu2.*mu2; % 计算出Uy平方值。
mu1_mu2 = mu1.*mu2; % 计算Ux*Uy值。

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; % 计算sigmax (标准差)
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; % 计算sigmay (标准差)
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; % 计算sigmaxy(标准差)

if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return

0 comments on commit 279bbb0

Please sign in to comment.