Skip to content

[CVPR 2022] Ha-NeRF😆: Hallucinated Neural Radiance Fields in the Wild

Notifications You must be signed in to change notification settings

rover-xingyu/Ha-NeRF

Repository files navigation

Ha-NeRF:laughing:: Hallucinated Neural Radiance Fields in the Wild

Project Page | Paper | Latest arXiv | Supplementary

Xingyu Chen¹, Qi Zhang², Xiaoyu Li², Yue Chen¹, Ying Feng², Xuan Wang², Jue Wang².

¹Xi'an Jiaotong University, ²Tencent AI Lab.

This repository is an official implementation of Ha-NeRF (Hallucinated Neural Radiance Fields in the Wild) using pytorch (pytorch-lightning).

💻 Installation

Hardware

  • OS: Ubuntu 18.04
  • NVIDIA GPU with CUDA>=10.2
  • We optimize all implementations for 600 000 iterations with a batch size of 1024 on 4 A100s, where Ha-NeRF and NeRF-W take 20 and 18 hours, respectively. Both methods require around 20 GB of memory for training and 5 GB for inference.

Software

  • Clone this repo by git clone https://github.com/rover-xingyu/Ha-NeRF
  • Python>=3.6 (installation via anaconda is recommended, use conda create -n HaNeRF python=3.6 to create a conda environment and activate it by conda activate HaNeRF)
  • Python libraries
    • Install core requirements by pip install -r requirements.txt

🔑 Training

Data download

Download the scenes you want from here

Download the train/test split from here and put under each scene's folder (the same level as the "dense" folder)

(Optional but highly recommended) Run python3.6 prepare_phototourism.py --root_dir $ROOT_DIR --img_downscale {an integer, e.g. 2 means half the image sizes} to prepare the training data and save to disk first, if you want to run multiple experiments or run on multiple gpus. This will largely reduce the data preparation step before training.

Run (example)

python3.6 prepare_phototourism.py --root_dir /path/to/the/datasets/brandenburg_gate/ --img_downscale 2

Training model

Run (example)

python3.6 train_mask_grid_sample.py \
  --root_dir /path/to/the/datasets/brandenburg_gate/ --dataset_name phototourism \
  --save_dir save \
  --img_downscale 2 --use_cache \
  --N_importance 64 --N_samples 64 \
  --num_epochs 20 --batch_size 1024 \
  --optimizer adam --lr 5e-4 --lr_scheduler cosine \
  --exp_name exp_HaNeRF_Brandenburg_Gate \
  --N_emb_xyz 15 --N_vocab 1500 \
  --use_mask --maskrs_max 5e-2 --maskrs_min 6e-3 --maskrs_k 1e-3 --maskrd 0 \
  --encode_a --N_a 48 --weightKL 1e-5 --encode_random --weightRecA 1e-3 --weightMS 1e-6 \
  --num_gpus 4

Add --encode_a for using appearance hallucination module, --use_mask for using anti-occlusion module. --N_vocab should be set to an integer larger than the number of images (dependent on different scenes). For example, "brandenburg_gate" has in total 1363 images (under dense/images/), so any number larger than 1363 works (no need to set to exactly the same number). Attention! If you forget to set this number, or it is set smaller than the number of images, the program will yield RuntimeError: CUDA error: device-side assert triggered (which comes from torch.nn.Embedding).

See opt.py for all configurations.

The checkpoints and logs will be saved to {save_dir}/ckpts/{scene_name} and {save_dir}/logs/{scene_name}, respectively.

You can monitor the training process by tensorboard --logdir save/logs/exp_HaNeRF_Brandenburg_Gate --port=8600 and go to localhost:8600 in your browser.

🔎 Evaluation

Use eval.py to inference on all test data. It will create folder {save_dir}/results/{dataset_name}/{scene_name} and save the rendered images.

Run (example)

python3.6 eval.py \
  --root_dir /path/to/the/datasets/brandenburg_gate/ \
  --save_dir save \
  --dataset_name phototourism --scene_name HaNeRF_Trevi_Fountain \
  --split test_test --img_downscale 2 \
  --N_samples 256 --N_importance 256 --N_emb_xyz 15 \
  --N_vocab 1500 --encode_a \
  --ckpt_path save/ckpts/HaNeRF_Brandenburg_Gate/epoch\=19.ckpt \
  --chunk 16384 --img_wh 320 240

Then you can use eval_metric.py to get the quantitative report of different metrics based on the rendered images from eval.py. It will create a file result.txt in the folder {save_dir}/results/{dataset_name}/{scene_name} and save the metrics.

Run (example)

python3.6 eval_metric.py \
  --root_dir /path/to/the/datasets/brandenburg_gate/ \
  --save_dir save \
  --dataset_name phototourism --scene_name HaNeRF_Trevi_Fountain \
  --split test_test --img_downscale 2 \
  --img_wh 320 240

😆 Hallucination

Use hallucinate.py to play with Ha-NeRF by hallucinating appearance from different scenes {example_image} in different views! It will create folder {save_dir}/hallucination/{scene_name} and render the hallucinations, finally create a gif out of them.

Run (example)

python3.6 hallucinate.py \
    --save_dir save \
    --ckpt_path save/ckpts/HaNeRF_Trevi_Fountain/epoch\=19.ckpt \
    --chunk 16384 \
    --example_image artworks \
    --scene_name artworks_2_fountain

Cite

If you find our work useful, please consider citing:

@inproceedings{chen2022hallucinated,
  title={Hallucinated neural radiance fields in the wild},
  author={Chen, Xingyu and Zhang, Qi and Li, Xiaoyu and Chen, Yue and Feng, Ying and Wang, Xuan and Wang, Jue},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12943--12952},
  year={2022}
}

Acknowledge

Our code is based on the awesome pytorch implementation of NeRF in the Wild (NeRF-W). We appreciate all the contributors.

About

[CVPR 2022] Ha-NeRF😆: Hallucinated Neural Radiance Fields in the Wild

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages