Skip to content

Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

License

Notifications You must be signed in to change notification settings

rish-16/aft-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

aft-pytorch

Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc.

I'd like to thank primary author, Dr. Shuangfei Zhai, for his informal guidance and feedback as I built this package!

Installation

You can install aft-pytorch via pip:

pip install aft-pytorch

Usage

You can import the AFT-Full or AFT-Simple layer (as described in the paper) from the package like so:

AFTFull

from aft_pytorch import AFTFull

layer = AFTFull(
    max_seqlen=20,
    dim=512,
    hidden_dim=64
)

# a batch of sequences with 10 timesteps of length 512 each
x = torch.rand(32, 10, 512)
y = layer(x) # [32, 10, 512]

AFTSimple

from aft_pytorch import AFTSimple

layer = AFTSimple(
    max_seqlen=20,
    dim=512,
    hidden_dim=64
)

# a batch of sequences with 10 timesteps of length 512 each
x = torch.rand(32, 10, 512)
y = layer(x) # [32, 10, 512]

AFTLocal

from aft_pytorch import AFTLocal

layer = AFTLocal(
    max_seqlen=20,
    dim=512,
    hidden_dim=64
)

# a batch of sequences with 10 timesteps of length 512 each
x = torch.rand(32, 10, 512)
y = layer(x) # [32, 10, 512]

This layer wrapper is a 'plug-and-play' with your existing networks / Transformers. You can swap out the Self-Attention layer with the available layers in this package with minimal changes.

TODO

  • Add full AFT architecture
  • Add variants like, AFTConv
  • Benchmark using Karpathy's minGPT

Contributing

If you like this repo, please leave a star! If there are any amends or suggestions, feel free to raise a PR/issue.

Credits

@misc{attention-free-transformer,
title = {An Attention Free Transformer},
author = {Shuangfei Zhai and Walter Talbott and Nitish Srivastava and Chen Huang and Hanlin Goh and Ruixiang Zhang and Josh Susskind},
year = {2021},
URL = {https://arxiv.org/pdf/2105.14103.pdf}
}

License

MIT

About

Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages