Skip to content

Commit

Permalink
Merge pull request #149 from mraspaud/fix-cast-warning
Browse files Browse the repository at this point in the history
Make sure no cast warning is issued when saving
  • Loading branch information
djhoese authored Dec 16, 2023
2 parents 43ecd51 + f21c984 commit cb62b3b
Show file tree
Hide file tree
Showing 2 changed files with 188 additions and 129 deletions.
315 changes: 186 additions & 129 deletions trollimage/tests/test_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
import sys
import tempfile
import unittest
import warnings
from unittest import mock
from collections import OrderedDict
from tempfile import NamedTemporaryFile
Expand Down Expand Up @@ -879,153 +880,209 @@ def test_save_palettes(self):
with NamedTemporaryFile(suffix='.png') as tmp:
img.save(tmp.name)

@pytest.mark.skipif(sys.platform.startswith('win'),
reason="'NamedTemporaryFile' not supported on Windows")
def test_save_geotiff_float(self):
def test_save_geotiff_float_numpy_array(self, tmp_path):
"""Test saving geotiffs when input data is float."""
# numpy array image - scale to 0 to 1 first
data = xr.DataArray(np.arange(75).reshape(5, 5, 3) / 75.,
data = xr.DataArray(np.arange(75).reshape((5, 5, 3)) / 75.,
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
img = xrimage.XRImage(data)
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band added
exp = (np.arange(75.).reshape(5, 5, 3) / 75. * 255).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
np.testing.assert_allclose(file_data[3], 255) # completely opaque

data = xr.DataArray(da.from_array(np.arange(75.).reshape(5, 5, 3) / 75., chunks=5),
filename = tmp_path / "image.tif"

img.save(filename)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band added
exp = (np.arange(75.).reshape(5, 5, 3) / 75. * 255).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
np.testing.assert_allclose(file_data[3], 255) # completely opaque

def test_save_geotiff_float_dask_array(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
img = xrimage.XRImage(data)
# Regular default save
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band added
exp = (np.arange(75.).reshape(5, 5, 3) / 75. * 255).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
np.testing.assert_allclose(file_data[3], 255) # completely opaque

# with NaNs
filename = tmp_path / "image.tif"

img.save(filename)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band added
exp = (np.arange(75.).reshape(5, 5, 3) / 75. * 255).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
np.testing.assert_allclose(file_data[3], 255) # completely opaque

def test_save_geotiff_float_dask_array_with_nans(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band added
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = 0 # numpy converts NaNs to 0s
exp = (exp * 255).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
is_null = (exp == 0).all(axis=2)
np.testing.assert_allclose(file_data[3][~is_null], 255) # completely opaque
np.testing.assert_allclose(file_data[3][is_null], 0) # completely transparent

# with fill value
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name, fill_value=128)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp2 = (exp * 255).round()
exp2[exp <= 10. / 75.] = 128
np.testing.assert_allclose(file_data[0], exp2[:, :, 0])
np.testing.assert_allclose(file_data[1], exp2[:, :, 1])
np.testing.assert_allclose(file_data[2], exp2[:, :, 2])

# float type - floats can't have alpha channel
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name, dtype=np.float32)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
# fill value is forced to 0
exp[exp <= 10. / 75.] = 0
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])

# float type with NaN fill value
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name, dtype=np.float32, fill_value=np.nan)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = np.nan
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])

# float type with non-NaN fill value
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name, dtype=np.float32, fill_value=128)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = 128
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])

# float input with fill value saved to int16 (signed!)
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name, dtype=np.int16, fill_value=-128)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp2 = (exp * (2 ** 16 - 1) - (2 ** 15)).round()
exp2[exp <= 10. / 75.] = -128.
np.testing.assert_allclose(file_data[0], exp2[:, :, 0])
np.testing.assert_allclose(file_data[1], exp2[:, :, 1])
np.testing.assert_allclose(file_data[2], exp2[:, :, 2])
filename = tmp_path / "image.tif"

with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
img.save(filename)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band added
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = 0 # numpy converts NaNs to 0s
exp = (exp * 255).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
is_null = (exp == 0).all(axis=2)
np.testing.assert_allclose(file_data[3][~is_null], 255) # completely opaque
np.testing.assert_allclose(file_data[3][is_null], 0) # completely transparent

def test_save_geotiff_float_dask_array_with_nans_and_fill_value(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
filename = tmp_path / "image.tif"

img.save(filename, fill_value=128)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp2 = (exp * 255).round()
exp2[exp <= 10. / 75.] = 128
np.testing.assert_allclose(file_data[0], exp2[:, :, 0])
np.testing.assert_allclose(file_data[1], exp2[:, :, 1])
np.testing.assert_allclose(file_data[2], exp2[:, :, 2])

def test_save_geotiff_float_dask_array_to_float(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
filename = tmp_path / "image.tif"

img.save(filename, dtype=np.float32)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
# fill value is forced to 0
exp[exp <= 10. / 75.] = 0
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])

def test_save_geotiff_float_dask_array_to_float_with_nans_fill_value(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
filename = tmp_path / "image.tif"

img.save(filename, dtype=np.float32, fill_value=np.nan)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = np.nan
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])

def test_save_geotiff_float_dask_array_to_float_with_numeric_fill_value(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
filename = tmp_path / "image.tif"

img.save(filename, dtype=np.float32, fill_value=128)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = 128
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])

def test_save_geotiff_float_dask_array_to_signed_int(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
filename = tmp_path / "image.tif"

img.save(filename, dtype=np.int16, fill_value=-128)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (3, 5, 5) # no alpha band
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp2 = (exp * (2 ** 16 - 1) - (2 ** 15)).round()
exp2[exp <= 10. / 75.] = -128.
np.testing.assert_allclose(file_data[0], exp2[:, :, 0])
np.testing.assert_allclose(file_data[1], exp2[:, :, 1])
np.testing.assert_allclose(file_data[2], exp2[:, :, 2])

def test_delayed_save_geotiff_float_dask_array(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
img = xrimage.XRImage(data)
filename = tmp_path / "image.tif"

# dask delayed save
with NamedTemporaryFile(suffix='.tif') as tmp:
delay = img.save(tmp.name, compute=False)
assert isinstance(delay, tuple)
assert isinstance(delay[0], da.Array)
assert isinstance(delay[1], RIODataset)
da.store(*delay)
delay[1].close()
delay = img.save(filename, compute=False)
assert isinstance(delay, tuple)
assert isinstance(delay[0], da.Array)
assert isinstance(delay[1], RIODataset)
da.store(*delay)
delay[1].close()

# float RGBA input to uint8
def test_save_geotiff_float_dask_array_with_alpha(self, tmp_path):
"""Test saving geotiffs when input data is float."""
data = xr.DataArray(da.from_array(np.arange(75.).reshape((5, 5, 3)) / 75., chunks=5),
dims=['y', 'x', 'bands'],
coords={'bands': ['R', 'G', 'B']})
data = data.where(data > 10. / 75.)
alpha = xr.ones_like(data[:, :, 0])
alpha = alpha.where(data.notnull().all(dim='bands'), 0)
alpha['bands'] = 'A'
# make a float version of a uint8 RGBA
rgb_data = xr.concat((data, alpha), dim='bands')
img = xrimage.XRImage(rgb_data)
with NamedTemporaryFile(suffix='.tif') as tmp:
img.save(tmp.name)
with rio.open(tmp.name) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band already existed
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = 0 # numpy converts NaNs to 0s
exp = (exp * 255.).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
not_null = (alpha != 0).values
np.testing.assert_allclose(file_data[3][not_null], 255) # completely opaque
np.testing.assert_allclose(file_data[3][~not_null], 0) # completely transparent
filename = tmp_path / "image.tif"

img.save(filename)
with rio.open(filename) as f:
file_data = f.read()
assert file_data.shape == (4, 5, 5) # alpha band already existed
exp = np.arange(75.).reshape(5, 5, 3) / 75.
exp[exp <= 10. / 75.] = 0 # numpy converts NaNs to 0s
exp = (exp * 255.).round()
np.testing.assert_allclose(file_data[0], exp[:, :, 0])
np.testing.assert_allclose(file_data[1], exp[:, :, 1])
np.testing.assert_allclose(file_data[2], exp[:, :, 2])
not_null = (alpha != 0).values
np.testing.assert_allclose(file_data[3][not_null], 255) # completely opaque
np.testing.assert_allclose(file_data[3][~not_null], 0) # completely transparent

@pytest.mark.skipif(sys.platform.startswith('win'),
reason="'NamedTemporaryFile' not supported on Windows")
Expand Down
2 changes: 2 additions & 0 deletions trollimage/xrimage.py
Original file line number Diff line number Diff line change
Expand Up @@ -683,6 +683,8 @@ def _scale_to_dtype(self, data, dtype, fill_value=None):
data = data.clip(0, 1) * scale + offset
attrs.setdefault('enhancement_history', list()).append({'scale': scale, 'offset': offset})
data = data.round()
if fill_value is None:
data = data.fillna(np.iinfo(dtype).min)
data.attrs = attrs
return data

Expand Down

0 comments on commit cb62b3b

Please sign in to comment.