-
Notifications
You must be signed in to change notification settings - Fork 493
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Early Exit Loss and/or Layer Dropout (#1076)
Co-authored-by: ebsmothers <[email protected]>
- Loading branch information
1 parent
f799211
commit f8563dd
Showing
12 changed files
with
2,395 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# Config for multi-device full finetuning with early exit loss and/or layer dropout | ||
# in dev/early_exit_finetune_distributed.py using a Llama2 7B model on a small TOPv2 | ||
# instruction set. | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 4 dev/early_exit_finetune_distributed --config recipes/dev/7B_full_early_exit.yaml | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 4 dev/early_exit_finetune_distributed --config recipes/dev/7B_full_early_exit.yaml checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# To reproduce experiments of various papers that use early exit loss and/or layer dropout: | ||
# - LayerSkip (https://arxiv.org/abs/2404.16710) on TOPv2: | ||
# tune run --nnodes 1 --nproc_per_node 4 dev/early_exit_finetune_distributed --config recipes/dev/7B_full_early_exit.yaml early_exit_loss.scale=1.0 early_exit_loss.curriculum=torchtune.modules.early_exit_loss.GradualEarlyExitCurriculum early_exit_loss.scale_fn=torchtune.modules.early_exit_loss.linear_l_loss_scale layer_dropout.prob=0.2 layer_dropout.scale=exp | ||
# | ||
# - LITE (https://arxiv.org/abs/2310.18581): | ||
# tune run --nnodes 1 --nproc_per_node 4 dev/early_exit_finetune_distributed --config recipes/dev/7B_full_early_exit.yaml layer_dropout=null early_exit_loss.layers=8,12,16,20,24,28 early_exit_loss.scale_fn=torchtune.modules.early_exit_loss.uniform_loss_scale early_exit_loss.curriculum=null epochs=5 | ||
# | ||
# - LayerDrop (https://arxiv.org/abs/1909.11556): | ||
# tune run --nnodes 1 --nproc_per_node 4 dev/early_exit_finetune_distributed --config recipes/dev/7B_full_early_exit.yaml early_exit_loss=null layer_dropout.prob=0.2 layer_dropout.layers=1::2 | ||
# | ||
# - Progressive Layer Dropping (https://arxiv.org/abs/2010.13369) (The paper also implements a curriculum for layer drop probability which is not yet implemented.): | ||
# tune run --nnodes 1 --nproc_per_node 4 dev/early_exit_finetune_distributed --config recipes/dev/7B_full_early_exit.yaml early_exit_loss=null layer_dropout.prob=0.5 layer_dropout.scale=exp | ||
# | ||
# This config works best for distributed training, hence when the model is being fine-tuned on 2+ GPUs. | ||
# | ||
|
||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-7b-hf/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.instruct_dataset | ||
source: WillHeld/top_v2 | ||
split: train | ||
column_map: | ||
input: utterance | ||
output: semantic_parse | ||
|
||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.llama2_7b | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-7b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00002.bin, | ||
pytorch_model-00002-of-00002.bin | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-7b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 8 | ||
epochs: 1 | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
lr: 2e-5 | ||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 # Use to increase virtual batch size | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1 | ||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/topv2-llama2-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 | ||
|
||
# Early Exit Loss | ||
early_exit_loss: | ||
layers: "0::4" | ||
curriculum: torchtune.modules.early_exit_loss.RotationalEarlyExitCurriculum | ||
scale_fn: torchtune.modules.early_exit_loss.sum_l_loss_scale | ||
scale: 1.0 | ||
|
||
# Layer Dropout | ||
layer_dropout: | ||
prob: 0.2 | ||
layers: ":" | ||
layers_scale: "exp" | ||
disable_on_eval: True |
Oops, something went wrong.