-
Notifications
You must be signed in to change notification settings - Fork 493
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5eb04cd
commit bfaa533
Showing
7 changed files
with
480 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
# Config for multi-device full finetuning in full_finetune_distributed.py | ||
# using a Llama3.3 70B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-3.3-70B-Instruct --ignore-patterns "original/consolidated*" | ||
# | ||
# To launch on 8 devices, run the following command from root: | ||
# tune run --nproc_per_node 8 full_finetune_distributed --config llama3_3/70B_full | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 8 full_finetune_distributed --config llama3_3/70B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config is only tested on an 8xA100 machine. | ||
# | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Llama-3.3-70B-Instruct/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
packed: False # True increases speed | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3_3.llama3_3_70b | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-3.3-70B-Instruct/ | ||
checkpoint_files: [ | ||
model-00001-of-00030.safetensors, | ||
model-00002-of-00030.safetensors, | ||
model-00003-of-00030.safetensors, | ||
model-00004-of-00030.safetensors, | ||
model-00005-of-00030.safetensors, | ||
model-00006-of-00030.safetensors, | ||
model-00007-of-00030.safetensors, | ||
model-00008-of-00030.safetensors, | ||
model-00009-of-00030.safetensors, | ||
model-00010-of-00030.safetensors, | ||
model-00011-of-00030.safetensors, | ||
model-00012-of-00030.safetensors, | ||
model-00013-of-00030.safetensors, | ||
model-00014-of-00030.safetensors, | ||
model-00015-of-00030.safetensors, | ||
model-00016-of-00030.safetensors, | ||
model-00017-of-00030.safetensors, | ||
model-00018-of-00030.safetensors, | ||
model-00019-of-00030.safetensors, | ||
model-00020-of-00030.safetensors, | ||
model-00021-of-00030.safetensors, | ||
model-00022-of-00030.safetensors, | ||
model-00023-of-00030.safetensors, | ||
model-00024-of-00030.safetensors, | ||
model-00025-of-00030.safetensors, | ||
model-00026-of-00030.safetensors, | ||
model-00027-of-00030.safetensors, | ||
model-00028-of-00030.safetensors, | ||
model-00029-of-00030.safetensors, | ||
model-00030-of-00030.safetensors, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-3.3-70B-Instruct/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 1 | ||
|
||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 2e-5 | ||
# Note: highly recommended to use fused=True optimizer flag | ||
# with CPU offload for faster optimizer step. | ||
fused: True | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 # Use to increase virtual batch size | ||
|
||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
custom_sharded_layers: ['tok_embeddings', 'output'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed. | ||
fsdp_cpu_offload: True | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1 | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/full-llama3_3-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# Config for multi-device LoRA in lora_finetune_distributed.py | ||
# using a Llama3.3 70B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-3.3-70B-Instruct --ignore-patterns "original/consolidated*" | ||
# | ||
# This config needs 8 GPUs to run | ||
# tune run --nproc_per_node 8 lora_finetune_distributed --config llama3_3/70B_lora | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3_3.lora_llama3_3_70b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj'] | ||
apply_lora_to_mlp: True | ||
apply_lora_to_output: False | ||
lora_rank: 16 # higher increases accuracy and memory | ||
lora_alpha: 32 # usually alpha=2*rank | ||
lora_dropout: 0.0 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Llama-3.3-70B-Instruct/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-3.3-70B-Instruct/ | ||
checkpoint_files: [ | ||
model-00001-of-00030.safetensors, | ||
model-00002-of-00030.safetensors, | ||
model-00003-of-00030.safetensors, | ||
model-00004-of-00030.safetensors, | ||
model-00005-of-00030.safetensors, | ||
model-00006-of-00030.safetensors, | ||
model-00007-of-00030.safetensors, | ||
model-00008-of-00030.safetensors, | ||
model-00009-of-00030.safetensors, | ||
model-00010-of-00030.safetensors, | ||
model-00011-of-00030.safetensors, | ||
model-00012-of-00030.safetensors, | ||
model-00013-of-00030.safetensors, | ||
model-00014-of-00030.safetensors, | ||
model-00015-of-00030.safetensors, | ||
model-00016-of-00030.safetensors, | ||
model-00017-of-00030.safetensors, | ||
model-00018-of-00030.safetensors, | ||
model-00019-of-00030.safetensors, | ||
model-00020-of-00030.safetensors, | ||
model-00021-of-00030.safetensors, | ||
model-00022-of-00030.safetensors, | ||
model-00023-of-00030.safetensors, | ||
model-00024-of-00030.safetensors, | ||
model-00025-of-00030.safetensors, | ||
model-00026-of-00030.safetensors, | ||
model-00027-of-00030.safetensors, | ||
model-00028-of-00030.safetensors, | ||
model-00029-of-00030.safetensors, | ||
model-00030-of-00030.safetensors, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-3.3-70B-Instruct/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: True # Set to false to save the whole model + adapter merged | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
packed: False # True increases speed | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 # Use to increase virtual batch size | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
|
||
# Logging | ||
output_dir: /tmp/lora-llama3_3-finetune-output | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: True # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
# custom_sharded_layers: ['tok_embeddings', 'output'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed. | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 |
Oops, something went wrong.