Skip to content

Commit

Permalink
torchdata integration - multi-dataset and streaming support (#1929)
Browse files Browse the repository at this point in the history
  • Loading branch information
andrewkho authored Dec 16, 2024
1 parent c2c6f4a commit 9dae7f1
Show file tree
Hide file tree
Showing 9 changed files with 1,437 additions and 25 deletions.
122 changes: 122 additions & 0 deletions recipes/configs/llama3_2_vision/11B_lora_multi_dataset.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Config for multi-device LoRA finetuning in lora_finetune_distributed_td.py
# using a Llama3.2 11B Vision Instruct model
#
# This config assumes that you've run the following command before launching:
# tune download meta-llama/Llama-3.2-11B-Vision-Instruct --output-dir /tmp/Llama-3.2-11B-Vision-Instruct --ignore-patterns "original/consolidated*"
#
# To launch on 2 devices, run the following command from root:
# tune run --nproc_per_node 2 lora_finetune_distributed_td --config llama3_2_vision/11B_lora_td
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training:
# tune run --nproc_per_node 2 lora_finetune_distributed_td --config llama3_2_vision/11B_lora_td checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 11B_lora_single_device.yaml
# or 11B_qlora_single_device.yaml

# Model arguments
model:
_component_: torchtune.models.llama3_2_vision.lora_llama3_2_vision_11b
decoder_trainable: "frozen"
encoder_trainable: "lora"
fusion_trainable: "lora"
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
lora_dropout: 0.0
image_size: 560 # Make sure this matches the image_size in tokenizer

# Transform
tokenizer:
_component_: torchtune.models.llama3_2_vision.llama3_2_vision_transform
path: /tmp/Llama-3.2-11B-Vision-Instruct/original/tokenizer.model
image_size: 560
max_seq_len: 8192

# Checkpointer
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-3.2-11B-Vision-Instruct/
checkpoint_files:
filename_format: model-{}-of-{}.safetensors
max_filename: "00005"
recipe_checkpoint: null
output_dir: /tmp/Llama-3.2-11B-Vision-Instruct/
model_type: LLAMA3_VISION
resume_from_checkpoint: False
save_adapter_weights_only: False # PeFT formatting not available yet. This will save it in torchtune format only.

# TorchData setup
dataloader:
shuffle: True
collate_fn: torchtune.data.padded_collate_tiled_images_and_mask
parallel_method: thread
num_workers: 4 # Per dataset
pin_memory: true
packed: False # Set to true for great speed ups
prefetch_factor: 2
seed: null

datasets:
- source: HuggingFaceM4/the_cauldron
subset: ocrvqa
split: train
transform:
_component_: torchtune.datasets.multimodal.the_cauldron_transform
weight: 1.0
- source: HuggingFaceM4/the_cauldron
subset: dvqa
split: train
transform:
_component_: torchtune.datasets.multimodal.the_cauldron_transform
weight: 1.0
- source: HuggingFaceM4/the_cauldron
subset: docvqa
split: train
transform:
_component_: torchtune.datasets.multimodal.the_cauldron_transform
weight: 1.0
- source: HuggingFaceM4/the_cauldron
subset: tabmwp
split: train
transform:
_component_: torchtune.datasets.multimodal.the_cauldron_transform
weight: 1.0

# Fine-tuning arguments
epochs: 1
# max_steps_per_epoch is required for progress bar
max_steps_per_epoch: 50
batch_size: 4
gradient_accumulation_steps: 1
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 1e-4

lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
clip_grad_norm: 1.0
compile: True # pytorch compile, set to true for perf/memory improvement

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True
dtype: bf16

# Logging
output_dir: /tmp/lora-llama3.2-vision-finetune
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: /tmp/Llama-3.2-11B-Vision-Instruct/logs
log_every_n_steps: 1
log_peak_memory_stats: True
Loading

0 comments on commit 9dae7f1

Please sign in to comment.