Skip to content

Commit

Permalink
2024-11-01 nightly release (eab21f0)
Browse files Browse the repository at this point in the history
  • Loading branch information
pytorchbot committed Nov 1, 2024
1 parent 63bbadf commit 4c90017
Show file tree
Hide file tree
Showing 46 changed files with 3,885 additions and 365 deletions.
77 changes: 77 additions & 0 deletions recipes/configs/qwen2_5/0_5B_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Qwen2.5 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 full_finetune_distributed --config qwen2_5/0_5B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 full_finetune_distributed --config qwen2_5/0_5B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# Single device full finetuning requires more memory optimizations. It's
# best to use 0_5B_full_single_device.yaml for those cases

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
max_seq_len: null

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_0_5b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 16
compile: False

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
log_every_n_steps: 1
log_peak_memory_stats: False
82 changes: 82 additions & 0 deletions recipes/configs/qwen2_5/0_5B_full_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Config for single device full finetuning in full_finetune_single_device.py
# using a Qwen2.5 0.5B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
#
# The default config uses an optimizer from bitsandbytes. If you do not have it installed,
# you can install it with
# pip install bitsandbytes
#
# To launch on a single device, run the following command from root:
# tune run full_finetune_single_device --config qwen2_5/0_5B_full_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run full_finetune_single_device --config qwen2_5/0_5B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
max_seq_len: null

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_0_5b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
optimizer_in_bwd: False

max_steps_per_epoch: null
gradient_accumulation_steps: 8
compile: False

# Training environment
device: cuda

# Memory management
enable_activation_checkpointing: True

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
log_every_n_steps: 1
log_peak_memory_stats: False
114 changes: 114 additions & 0 deletions recipes/configs/qwen2_5/0_5B_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
# using a Qwen2.5 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2_5/0_5B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2_5/0_5B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 0_5B_lora_single_device.yaml


# Model Arguments
model:
_component_: torchtune.models.qwen2_5.lora_qwen2_5_0_5b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 32
lora_alpha: 64
lora_dropout: 0.0

tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-lora-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False

seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 2e-3

lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 4
compile: False

# Logging
output_dir: /tmp/Qwen2_5-0_5B-Instruct-lora-finetune
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler

enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
114 changes: 114 additions & 0 deletions recipes/configs/qwen2_5/0_5B_lora_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Qwen2.5 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config qwen2_5/0_5B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config qwen2_5/0_5B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.


# Model Arguments
model:
_component_: torchtune.models.qwen2_5.lora_qwen2_5_0_5b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 32
lora_alpha: 64
lora_dropout: 0.0

tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-lora-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False
seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 2e-3

lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 4
compile: False

# Logging
output_dir: /tmp/Qwen2_5-0_5B-Instruct-lora-finetune
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16

# Activations Offloading
enable_activation_checkpointing: True
enable_activation_offloading: False

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
Loading

0 comments on commit 4c90017

Please sign in to comment.