Skip to content

Commit

Permalink
Add support for QAT + LoRA (#1931)
Browse files Browse the repository at this point in the history
  • Loading branch information
andrewor14 authored Nov 26, 2024
1 parent d7f8eb0 commit 437a8ff
Show file tree
Hide file tree
Showing 12 changed files with 1,933 additions and 5 deletions.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,8 @@ torchtune provides the following finetuning recipes for training on one or more
| LoRA Finetuning | 1-8 | [lora_finetune_single_device](recipes/lora_finetune_single_device.py) <br> [lora_finetune_distributed](recipes/lora_finetune_distributed.py) | [Qwen2 0.5B single-device](recipes/configs/qwen2/0.5B_lora_single_device.yaml) <br> [Gemma 7B distributed](recipes/configs/gemma/7B_lora.yaml)
| QLoRA Finetuning | 1-8 | [lora_finetune_single_device](recipes/lora_finetune_single_device.py) <br> [lora_finetune_distributed](recipes/lora_finetune_distributed.py)| [Phi3 Mini single-device](recipes/configs/phi3/mini_qlora_single_device.yaml) <br> [Llama 3.1 405B distributed](recipes/configs/llama3_1/405B_qlora.yaml)
| DoRA/QDoRA Finetuning | 1-8 | [lora_finetune_single_device](recipes/lora_finetune_single_device.py) <br> [lora_finetune_distributed](recipes/lora_finetune_distributed.py)| [Llama3 8B QDoRA single-device](recipes/configs/llama3/8B_qdora_single_device.yaml) <br> [Llama3 8B DoRA distributed](recipes/configs/llama3/8B_dora.yaml)
| Quantization-Aware Training | 4-8 | [qat_distributed](recipes/qat_distributed.py)| [Llama3 8B QAT](recipes/configs/llama3/8B_qat_full.yaml)
| Quantization-Aware Training | 2-8 | [qat_distributed](recipes/qat_distributed.py)| [Llama3 8B QAT](recipes/configs/llama3/8B_qat_full.yaml)
| Quantization-Aware Training and LoRA Finetuning | 2-8 | [qat_lora_finetune_distributed](recipes/qat_lora_finetune_distributed.py)| [Llama3 8B QAT](recipes/configs/llama3/8B_qat_lora.yaml)
| Direct Preference Optimization |1-8 | [lora_dpo_single_device](recipes/lora_dpo_single_device.py) <br> [lora_dpo_distributed](recipes/lora_dpo_distributed.py) | [Llama2 7B single-device](recipes/configs/llama2/7B_lora_dpo_single_device.yaml) <br> [Llama2 7B distributed](recipes/configs/llama2/7B_lora_dpo.yaml)
| Proximal Policy Optimization | 1 | [ppo_full_finetune_single_device](recipes/ppo_full_finetune_single_device.py) | [Mistral 7B](recipes/configs/mistral/7B_full_ppo_low_memory.yaml)
| Knowledge Distillation | 1 | [knowledge_distillation_single_device](recipes/knowledge_distillation_single_device.py) | [Qwen2 1.5B -> 0.5B](recipes/configs/qwen2/knowledge_distillation_single_device.yaml)
Expand Down
113 changes: 113 additions & 0 deletions recipes/configs/llama3/8B_qat_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py
# using a Llama3 8B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN>
#
# To launch on 2 devices, run the following command from root:
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3/8B_qat_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3/8B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model
max_seq_len: null

# Model Arguments
model:
_component_: torchtune.models.llama3.lora_llama3_8b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0

checkpointer:
_component_: torchtune.training.FullModelMetaCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/
checkpoint_files: [
consolidated.00.pth
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3-8B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Logging
output_dir: /tmp/qat_lora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1

# QAT arguments
quantizer:
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer
groupsize: 256
116 changes: 116 additions & 0 deletions recipes/configs/llama3_1/8B_qat_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py
# using a Llama3.1 8B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3.1-8B-Instruct --output-dir /tmp/Meta-Llama-3.1-8B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# To launch on 2 devices, run the following command from root:
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_1/8B_qat_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_1/8B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3.1-8B-Instruct/original/tokenizer.model
max_seq_len: null

# Model Arguments
model:
_component_: torchtune.models.llama3_1.lora_llama3_1_8b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Logging
output_dir: /tmp/qat_lora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1

# QAT arguments
quantizer:
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer
groupsize: 256
112 changes: 112 additions & 0 deletions recipes/configs/llama3_2/1B_qat_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py
# using a Llama3.2 1B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-3.2-1B-Instruct --output-dir /tmp/Llama-3.2-1B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# To launch on 2 devices, run the following command from root:
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_2/1B_qat_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_2/1B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Llama-3.2-1B-Instruct/original/tokenizer.model
max_seq_len: null

# Model Arguments
model:
_component_: torchtune.models.llama3_2.lora_llama3_2_1b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
lora_rank: 64 # higher increases accuracy and memory
lora_alpha: 128 # usually alpha=2*rank
lora_dropout: 0.0

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-3.2-1B-Instruct/
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Llama-3.2-1B-Instruct/
model_type: LLAMA3_2
resume_from_checkpoint: False
save_adapter_weights_only: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Logging
output_dir: /tmp/qat_lora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1

# QAT arguments
quantizer:
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer
groupsize: 256
Loading

0 comments on commit 437a8ff

Please sign in to comment.