Skip to content

Commit

Permalink
Update Qwen2.5 configs (#1999)
Browse files Browse the repository at this point in the history
  • Loading branch information
joecummings authored Nov 13, 2024
1 parent 18d97f0 commit 1eb7785
Show file tree
Hide file tree
Showing 9 changed files with 268 additions and 334 deletions.
Original file line number Diff line number Diff line change
@@ -1,82 +1,75 @@
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Qwen2.5 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
# This config assumes that you've run the following command before launching:
# tune download Qwen/Qwen2.5-0.5B-Instruct --ignore-patterns None
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 full_finetune_distributed --config qwen2_5/0_5B_full
# tune run --nproc_per_node 2 full_finetune_distributed --config qwen2_5/0.5B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 full_finetune_distributed --config qwen2_5/0_5B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
# to override the checkpointer directory while launching training:
# tune run --nproc_per_node 2 full_finetune_distributed --config qwen2_5/0.5B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# Single device full finetuning requires more memory optimizations. It's
# best to use 0_5B_full_single_device.yaml for those cases
# This config is for fine-tuning on 2+ GPUs.

# Model arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_0_5b

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
path: /tmp/Qwen2.5-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2.5-0.5B-Instruct/merges.txt
max_seq_len: null

# Checkpointer
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2.5-0.5B-Instruct
checkpoint_files: [model.safetensors]
recipe_checkpoint: null
output_dir: /tmp/Qwen2.5-0.5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_0_5b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
max_steps_per_epoch: null
batch_size: 2
gradient_accumulation_steps: 8 # Use to increase virtual batch size
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
# Memory management / performance
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Logging
output_dir: /tmp/Qwen2.5-0.5B-Instruct-finetune
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: False
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,86 +1,75 @@
# Config for single device full finetuning in full_finetune_single_device.py
# using a Qwen2.5 0.5B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
#
# The default config uses an optimizer from bitsandbytes. If you do not have it installed,
# you can install it with
# pip install bitsandbytes
# This config assumes that you've run the following command before launching:
# tune download Qwen/Qwen2.5-0.5B-Instruct --ignore-patterns None
#
# To launch on a single device, run the following command from root:
# tune run full_finetune_single_device --config qwen2_5/0_5B_full_single_device
# tune run full_finetune_single_device --config qwen2_5/0.5B_full_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run full_finetune_single_device --config qwen2_5/0_5B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
# to override the checkpointer directory while launching training:
# tune run full_finetune_single_device --config qwen2_5/0.5B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

# Model arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_0_5b

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
path: /tmp/Qwen2.5-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2.5-0.5B-Instruct/merges.txt
max_seq_len: null

# Checkpointer
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2.5-0.5B-Instruct
checkpoint_files: [model.safetensors]
recipe_checkpoint: null
output_dir: /tmp/Qwen2.5-0.5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_0_5b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
max_steps_per_epoch: null
batch_size: 2
gradient_accumulation_steps: 8 # Use to increase virtual batch size
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5

optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1

max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Training environment
# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
# Memory management / performance
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Logging
output_dir: /tmp/Qwen2.5-0.5B-Instruct-finetune
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Qwen2_5-0_5B-Instruct-finetune
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: False
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,23 +1,19 @@
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
# using a Qwen2.5 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-0.5B-Instruct --output-dir /tmp/Qwen2_5-0_5B-Instruct --ignore-patterns None
# This config assumes that you've run the following command before launching:
# tune download Qwen/Qwen2.5-0.5B-Instruct --ignore-patterns None
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2_5/0_5B_lora
# tune run --nproc_per_node 2 lora_finetune_distributed --config qwen2_5/0.5B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2_5/0_5B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
# to override the checkpointer directory while launching training:
# tune run --nproc_per_node 2 lora_finetune_distributed --config qwen2_5/0.5B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 0_5B_lora_single_device.yaml
# This config is for fine-tuning on 2+ GPUs.


# Model Arguments
# Model arguments
model:
_component_: torchtune.models.qwen2_5.lora_qwen2_5_0_5b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
Expand All @@ -26,71 +22,66 @@ model:
lora_alpha: 64 # usually alpha=2*rank
lora_dropout: 0.0

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-0_5B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-0_5B-Instruct/merges.txt
path: /tmp/Qwen2.5-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2.5-0.5B-Instruct/merges.txt
max_seq_len: null

# Checkpointer
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-0_5B-Instruct
checkpoint_files: [
model.safetensors
]
checkpoint_dir: /tmp/Qwen2.5-0.5B-Instruct
checkpoint_files: [model.safetensors]
recipe_checkpoint: null
output_dir: /tmp/Qwen2_5-0_5B-Instruct-lora-finetune
output_dir: /tmp/Qwen2.5-0.5B-Instruct-lora-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset and Sampler
# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed

seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
# Fine-tuning arguments
epochs: 1
max_steps_per_epoch: null
batch_size: 2
gradient_accumulation_steps: 8 # Use to increase virtual batch size
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 2e-3

lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory
# Training env
device: cuda

# Memory management / performance
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory
dtype: bf16
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Logging
output_dir: /tmp/Qwen2_5-0_5B-Instruct-lora-finetune
output_dir: /tmp/Qwen2.5-0.5B-Instruct-lora-finetune
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: False
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler

enabled: False

#Output directory of trace artifacts
Expand All @@ -109,6 +100,6 @@ profiler:
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
Loading

0 comments on commit 1eb7785

Please sign in to comment.