-
Notifications
You must be signed in to change notification settings - Fork 471
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[torchtune][dcp] Unit test for the DistributedCheckpointer
- Loading branch information
Saurabh Mishra
committed
Nov 19, 2024
1 parent
daaf4b8
commit 1b1342e
Showing
2 changed files
with
166 additions
and
3 deletions.
There are no files selected for viewing
153 changes: 153 additions & 0 deletions
153
tests/torchtune/training/checkpointing/test_distributed_checkpointer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
|
||
import os | ||
import shutil | ||
from pathlib import Path | ||
|
||
import pytest | ||
import torch | ||
from torch import randn, zeros | ||
|
||
from torchtune.training.checkpointing import DistributedCheckpointer | ||
from torchtune.training.seed import set_seed | ||
|
||
_VOCAB_SIZE = 100 | ||
_DIM = 64 | ||
_HIDDEN_DIM = 256 | ||
|
||
|
||
@pytest.fixture(autouse=True) | ||
def random(): | ||
set_seed(16) | ||
|
||
|
||
class TestDistributedCheckpointer: | ||
@pytest.fixture | ||
def weight_dtype(self): | ||
return torch.float16 | ||
|
||
@pytest.fixture | ||
def state_dict(self, weight_dtype): | ||
""" | ||
State dict | ||
""" | ||
state_dict = { | ||
"model.embed_tokens.weight": randn(_VOCAB_SIZE, _DIM, dtype=weight_dtype), | ||
"model.layers.0.input_layernorm.weight": randn(_DIM, dtype=weight_dtype), | ||
"model.layers.0.self_attn.q_proj.weight": randn( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.k_proj.weight": randn( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.v_proj.weight": randn( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.o_proj.weight": randn( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.post_attention_layernorm.weight": randn( | ||
_DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.rotary_emb.inv_freq": randn( | ||
_DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.mlp.gate_proj.weight": randn( | ||
_HIDDEN_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.mlp.down_proj.weight": randn( | ||
_DIM, _HIDDEN_DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.mlp.up_proj.weight": randn( | ||
_HIDDEN_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.norm.weight": randn(_DIM, dtype=weight_dtype), | ||
"lm_head.weight": randn(_VOCAB_SIZE, _DIM, dtype=weight_dtype), | ||
} | ||
|
||
return state_dict | ||
|
||
@pytest.fixture | ||
def empty_state_dict(self, weight_dtype): | ||
""" | ||
State dict | ||
""" | ||
state_dict = { | ||
"model.embed_tokens.weight": zeros(_VOCAB_SIZE, _DIM, dtype=weight_dtype), | ||
"model.layers.0.input_layernorm.weight": zeros(_DIM, dtype=weight_dtype), | ||
"model.layers.0.self_attn.q_proj.weight": zeros( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.k_proj.weight": zeros( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.v_proj.weight": zeros( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.o_proj.weight": zeros( | ||
_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.post_attention_layernorm.weight": zeros( | ||
_DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.self_attn.rotary_emb.inv_freq": zeros( | ||
_DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.mlp.gate_proj.weight": zeros( | ||
_HIDDEN_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.mlp.down_proj.weight": zeros( | ||
_DIM, _HIDDEN_DIM, dtype=weight_dtype | ||
), | ||
"model.layers.0.mlp.up_proj.weight": zeros( | ||
_HIDDEN_DIM, _DIM, dtype=weight_dtype | ||
), | ||
"model.norm.weight": zeros(_DIM, dtype=weight_dtype), | ||
"lm_head.weight": zeros(_VOCAB_SIZE, _DIM, dtype=weight_dtype), | ||
} | ||
|
||
return state_dict | ||
|
||
@pytest.fixture | ||
def distributed_checkpointer(self, tmp_path) -> DistributedCheckpointer: | ||
return DistributedCheckpointer( | ||
checkpoint_dir=tmp_path, | ||
output_dir=tmp_path, | ||
) | ||
|
||
def test_save_load_checkpoint( | ||
self, distributed_checkpointer, state_dict, empty_state_dict | ||
): | ||
""" | ||
Test ``load_checkpoint`` method within the DistributedCheckpointer. | ||
We test: | ||
* ``load_checkpoint`` loads the right sets of keys | ||
* Internal state of the checkpointer is correctly updated. | ||
""" | ||
|
||
distributed_checkpointer.save_checkpoint( | ||
state_dict=state_dict, epoch=1, save_async=False | ||
) | ||
|
||
checkpoint_path = Path.joinpath( | ||
distributed_checkpointer._output_dir, | ||
f"{distributed_checkpointer._checkpoint_dir_prefix}_1", | ||
) | ||
|
||
assert os.path.exists(checkpoint_path) | ||
|
||
distributed_checkpointer.load_checkpoint( | ||
state_dict=empty_state_dict, | ||
) | ||
|
||
for key in state_dict.keys(): | ||
assert torch.equal(state_dict[key], empty_state_dict[key]) | ||
|
||
# clean ups | ||
shutil.rmtree(checkpoint_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters