-
Notifications
You must be signed in to change notification settings - Fork 470
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
9 changed files
with
1,704 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
LOG_DIR="${LOG_DIR:-/home/andrewor/local/logs/tune/qat_lora}" | ||
CHECKPOINT_FILE="${CHECKPOINT_FILE:-meta_model_0.pt}" | ||
GROUP_SIZE="${GROUP_SIZE:=32}" | ||
export CUDA_VISIBLE_DEVICES="${CUDA_VISIBLE_DEVICES:-1}" | ||
QUANTIZED_CHECKPOINT_FILE="$(echo "$CHECKPOINT_FILE" | sed 's/\.pt/-8da4w.pt/g')" | ||
|
||
tune run quantize --config quantization \ | ||
model._component_=torchtune.models.llama3.llama3_8b \ | ||
checkpointer._component_=torchtune.training.FullModelMetaCheckpointer \ | ||
checkpointer.checkpoint_dir="$LOG_DIR" \ | ||
checkpointer.output_dir="$LOG_DIR" \ | ||
checkpointer.checkpoint_files=["$CHECKPOINT_FILE"] \ | ||
checkpointer.model_type=LLAMA3 \ | ||
quantizer._component_=torchtune.training.quantization.Int8DynActInt4WeightQuantizer \ | ||
quantizer.groupsize="$GROUP_SIZE" \ | ||
> "$LOG_DIR"/quantize.log 2>&1 | ||
|
||
tune run eleuther_eval --config eleuther_evaluation \ | ||
batch_size=1 \ | ||
model._component_=torchtune.models.llama3.llama3_8b \ | ||
checkpointer._component_=torchtune.training.FullModelTorchTuneCheckpointer \ | ||
checkpointer.checkpoint_dir="$LOG_DIR" \ | ||
checkpointer.output_dir="$LOG_DIR" \ | ||
checkpointer.checkpoint_files=["$QUANTIZED_CHECKPOINT_FILE"] \ | ||
checkpointer.model_type=LLAMA3 \ | ||
tokenizer._component_=torchtune.models.llama3.llama3_tokenizer \ | ||
tokenizer.path=/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model \ | ||
tasks=[wikitext] \ | ||
quantizer._component_=torchtune.training.quantization.Int8DynActInt4WeightQuantizer \ | ||
quantizer.groupsize="$GROUP_SIZE" \ | ||
> "$LOG_DIR"/eval.log 2>&1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py | ||
# using a Llama2 7B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 2 qat_lora_finetune_distributed --config llama2/7B_qat_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 2 qat_lora_finetune_distributed --config llama2/7B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_7b | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
lora_dropout: 0.0 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-7b-hf/tokenizer.model | ||
max_seq_len: null | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-7b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00002.bin, | ||
pytorch_model-00002-of-00002.bin | ||
] | ||
adapter_checkpoint: null | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-7b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
packed: False # Set to true for great speed ups | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 32 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# Show case the usage of pytorch profiler | ||
# Set enabled to False as it's only needed for debugging training | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
|
||
enabled: False | ||
|
||
# Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
# trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 5 | ||
active_steps: 2 | ||
num_cycles: 1 | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py | ||
# using a Llama3 8B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3/8B_qat_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3/8B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3.lora_llama3_8b | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
lora_dropout: 0.0 | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelMetaCheckpointer | ||
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/ | ||
checkpoint_files: [ | ||
consolidated.00.pth | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Meta-Llama-3-8B-Instruct/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
packed: False # Set to true for great speed ups | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 32 | ||
compile: False | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 |
Oops, something went wrong.