-
Notifications
You must be signed in to change notification settings - Fork 491
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
**Summary:** This commit adds a recipe that combines QAT + LoRA, with the main goal of improving final quantized accuracy after training while reducing the memory required for fine-tuning. The new recipe `qat_lora_finetune_distributed` mirrors the existing `lora_finetune_distributed` recipe, which performs only LoRA, and is analogous to the existing `qat_distributed` recipe, which performs only QAT. Helpful code review commands: ``` diff --color recipes/lora_finetune_distributed.py recipes/qat_lora_finetune_distributed.py diff --color recipes/configs/llama3/8B_lora.yaml recipes/configs/llama3/8B_qat_lora.yaml diff --color recipes/configs/llama3_1/8B_lora.yaml recipes/configs/llama3_1/8B_qat_lora.yaml diff --color recipes/configs/llama3_2/1B_lora.yaml recipes/configs/llama3_2/1B_qat_lora.yaml diff --color recipes/configs/llama3_2/3B_lora.yaml recipes/configs/llama3_2/3B_qat_lora.yaml ``` For more context on QAT, please visit #980 and https://pytorch.org/blog/quantization-aware-training/. **Test Plan** Unit tests: ``` pytest -m integration_test tests/recipes/test_qat_lora_finetune_distributed.py ``` Manual tests: ``` export CUDA_VISIBLE_DEVICES=4,5,6,7 export NCCL_SHM_DISABLE=0 LOG_DIR=/home/andrewor/local/logs/tune/qat_lora tune run --nnodes 1 --nproc_per_node 4 qat_lora_finetune_distributed --config llama3/8B_qat_lora \ batch_size=4 \ quantizer.groupsize=32 \ checkpointer.output_dir="$LOG_DIR" \ metric_logger.output_dir="${LOG_DIR}/metrics" tune run quantize --config quantization \ model._component_=torchtune.models.llama3.llama3_8b \ checkpointer._component_=torchtune.training.FullModelMetaCheckpointer \ checkpointer.checkpoint_dir="$LOG_DIR" \ checkpointer.output_dir="$LOG_DIR" \ checkpointer.checkpoint_files=["meta_model_0.pt"] \ checkpointer.model_type=LLAMA3 \ quantizer._component_=torchtune.training.quantization.Int8DynActInt4WeightQuantizer \ quantizer.groupsize=32 tune run eleuther_eval --config eleuther_evaluation \ batch_size=1 \ model._component_=torchtune.models.llama3.llama3_8b \ checkpointer._component_=torchtune.training.FullModelTorchTuneCheckpointer \ checkpointer.checkpoint_dir="$LOG_DIR" \ checkpointer.output_dir="$LOG_DIR" \ checkpointer.checkpoint_files=["meta_model_0.pt-8da4w"] \ checkpointer.model_type=LLAMA3 \ tokenizer._component_=torchtune.models.llama3.llama3_tokenizer \ tokenizer.path=/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model \ tasks=[wikitext] \ quantizer._component_=torchtune.training.quantization.Int8DynActInt4WeightQuantizer \ quantizer.groupsize=32 ``` Results: ``` | Tasks |Version|Filter|n-shot| Metric | | Value | |Stderr| |--------|------:|------|------|---------------|---|------:|---|------| |wikitext| 2|none |None |bits_per_byte |↓ | 0.6284|± | N/A| | | |none |None |byte_perplexity|↓ | 1.5458|± | N/A| | | |none |None |word_perplexity|↓ |10.2694|± | N/A| | Tasks |Version|Filter|n-shot| Metric | | Value | |Stderr| |--------|------:|------|------|---------------|---|------:|---|------| |wikitext| 2|none |None |bits_per_byte |↓ | 0.6245|± | N/A| | | |none |None |byte_perplexity|↓ | 1.5416|± | N/A| | | |none |None |word_perplexity|↓ |10.1208|± | N/A| ```
- Loading branch information
1 parent
abdb5a4
commit 1181e39
Showing
11 changed files
with
1,920 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py | ||
# using a Llama3 8B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3/8B_qat_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3/8B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3.lora_llama3_8b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj'] | ||
apply_lora_to_mlp: True | ||
apply_lora_to_output: False | ||
lora_rank: 8 # higher increases accuracy and memory | ||
lora_alpha: 16 # usually alpha=2*rank | ||
lora_dropout: 0.0 | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelMetaCheckpointer | ||
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/ | ||
checkpoint_files: [ | ||
consolidated.00.pth | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Meta-Llama-3-8B-Instruct/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
packed: False # True increases speed | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 8 # Use to increase virtual batch size | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
|
||
# Logging | ||
output_dir: /tmp/qat_lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py | ||
# using a Llama3.1 8B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Meta-Llama-3.1-8B-Instruct --output-dir /tmp/Meta-Llama-3.1-8B-Instruct --ignore-patterns "original/consolidated.00.pth" | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_1/8B_qat_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_1/8B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Meta-Llama-3.1-8B-Instruct/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3_1.lora_llama3_1_8b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj'] | ||
apply_lora_to_mlp: True | ||
apply_lora_to_output: False | ||
lora_rank: 8 # higher increases accuracy and memory | ||
lora_alpha: 16 # usually alpha=2*rank | ||
lora_dropout: 0.0 | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Meta-Llama-3.1-8B-Instruct/ | ||
checkpoint_files: [ | ||
model-00001-of-00004.safetensors, | ||
model-00002-of-00004.safetensors, | ||
model-00003-of-00004.safetensors, | ||
model-00004-of-00004.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Meta-Llama-3.1-8B-Instruct/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
packed: False # True increases speed | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 8 # Use to increase virtual batch size | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
|
||
# Logging | ||
output_dir: /tmp/qat_lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Config for multi-device QAT + LoRA finetuning in qat_lora_finetune_distributed.py | ||
# using a Llama3.2 1B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-3.2-1B-Instruct --output-dir /tmp/Llama-3.2-1B-Instruct --ignore-patterns "original/consolidated.00.pth" | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_2/1B_qat_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 2 qat_lora_finetune_distributed --config llama3_2/1B_qat_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Llama-3.2-1B-Instruct/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3_2.lora_llama3_2_1b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj'] | ||
apply_lora_to_mlp: True | ||
lora_rank: 64 # higher increases accuracy and memory | ||
lora_alpha: 128 # usually alpha=2*rank | ||
lora_dropout: 0.0 | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-3.2-1B-Instruct/ | ||
checkpoint_files: [ | ||
model.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-3.2-1B-Instruct/ | ||
model_type: LLAMA3_2 | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
packed: False # True increases speed | ||
seed: null | ||
shuffle: True | ||
batch_size: 4 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 8 # Use to increase virtual batch size | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
|
||
# Logging | ||
output_dir: /tmp/qat_lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.training.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 |
Oops, something went wrong.