Skip to content

Commit

Permalink
Merge pull request #64 from prs-eth/hypersim_preprocess
Browse files Browse the repository at this point in the history
hypersim preprocessing scripts
  • Loading branch information
markkua authored May 15, 2024
2 parents be30652 + 9c17691 commit dfc2e11
Show file tree
Hide file tree
Showing 3 changed files with 240 additions and 0 deletions.
22 changes: 22 additions & 0 deletions script/dataset_preprocess/hypersim/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Hypersim preprocessing

## Download

Download [Hypersim](https://github.com/apple/ml-hypersim) dataset using [this script](https://github.com/apple/ml-hypersim/blob/20f398f4387aeca73175494d6a2568f37f372150/code/python/tools/dataset_download_images.py).

Download the scene split file from [here](https://github.com/apple/ml-hypersim/blob/main/evermotion_dataset/analysis/metadata_images_split_scene_v1.csv).

## Process dataset

Run the preprocessing script:

```bash
python script/dataset_preprocess/hypersim/preprocess_hypersim.py --split_csv /path/to/metadata_images_split_scene_v1.csv
```

(optional) Tar the processed data, for example:

```bash
cd data/Hypersim/processed/train
tar -cf ../../hypersim_processed_train.tar .
```
69 changes: 69 additions & 0 deletions script/dataset_preprocess/hypersim/hypersim_util.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Author: Bingxin Ke
# Last modified: 2024-02-19


from pylab import count_nonzero, clip, np


# Adapted from https://github.com/apple/ml-hypersim/blob/main/code/python/tools/scene_generate_images_tonemap.py
def tone_map(rgb, entity_id_map):
assert (entity_id_map != 0).all()

gamma = 1.0 / 2.2 # standard gamma correction exponent
inv_gamma = 1.0 / gamma
percentile = (
90 # we want this percentile brightness value in the unmodified image...
)
brightness_nth_percentile_desired = 0.8 # ...to be this bright after scaling

valid_mask = entity_id_map != -1

if count_nonzero(valid_mask) == 0:
scale = 1.0 # if there are no valid pixels, then set scale to 1.0
else:
brightness = (
0.3 * rgb[:, :, 0] + 0.59 * rgb[:, :, 1] + 0.11 * rgb[:, :, 2]
) # "CCIR601 YIQ" method for computing brightness
brightness_valid = brightness[valid_mask]

eps = 0.0001 # if the kth percentile brightness value in the unmodified image is less than this, set the scale to 0.0 to avoid divide-by-zero
brightness_nth_percentile_current = np.percentile(brightness_valid, percentile)

if brightness_nth_percentile_current < eps:
scale = 0.0
else:
# Snavely uses the following expression in the code at https://github.com/snavely/pbrs_tonemapper/blob/master/tonemap_rgbe.py:
# scale = np.exp(np.log(brightness_nth_percentile_desired)*inv_gamma - np.log(brightness_nth_percentile_current))
#
# Our expression below is equivalent, but is more intuitive, because it follows more directly from the expression:
# (scale*brightness_nth_percentile_current)^gamma = brightness_nth_percentile_desired

scale = (
np.power(brightness_nth_percentile_desired, inv_gamma)
/ brightness_nth_percentile_current
)

rgb_color_tm = np.power(np.maximum(scale * rgb, 0), gamma)
rgb_color_tm = clip(rgb_color_tm, 0, 1)
return rgb_color_tm


# According to https://github.com/apple/ml-hypersim/issues/9
def dist_2_depth(width, height, flt_focal, distance):
img_plane_x = (
np.linspace((-0.5 * width) + 0.5, (0.5 * width) - 0.5, width)
.reshape(1, width)
.repeat(height, 0)
.astype(np.float32)[:, :, None]
)
img_plane_y = (
np.linspace((-0.5 * height) + 0.5, (0.5 * height) - 0.5, height)
.reshape(height, 1)
.repeat(width, 1)
.astype(np.float32)[:, :, None]
)
img_plane_z = np.full([height, width, 1], flt_focal, np.float32)
img_plane = np.concatenate([img_plane_x, img_plane_y, img_plane_z], 2)

depth = distance / np.linalg.norm(img_plane, 2, 2) * flt_focal
return depth
149 changes: 149 additions & 0 deletions script/dataset_preprocess/hypersim/preprocess_hypersim.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
# Author: Bingxin Ke
# Last modified: 2024-02-19

import argparse
import os

import cv2
import h5py
import numpy as np
import pandas as pd
from hypersim_util import dist_2_depth, tone_map
from tqdm import tqdm

IMG_WIDTH = 1024
IMG_HEIGHT = 768
FOCAL_LENGTH = 886.81

if "__main__" == __name__:
parser = argparse.ArgumentParser()
parser.add_argument(
"--split_csv",
type=str,
default="data/Hypersim/metadata_images_split_scene_v1.csv",
)
parser.add_argument("--dataset_dir", type=str, default="data/Hypersim/raw_data")
parser.add_argument("--output_dir", type=str, default="data/Hypersim/processed")

args = parser.parse_args()

split_csv = args.split_csv
dataset_dir = args.dataset_dir
output_dir = args.output_dir

# %%
raw_meta_df = pd.read_csv(split_csv)
meta_df = raw_meta_df[raw_meta_df.included_in_public_release].copy()

# %%
for split in ["train", "val", "test"]:
split_output_dir = os.path.join(output_dir, split)
os.makedirs(split_output_dir)

split_meta_df = meta_df[meta_df.split_partition_name == split].copy()
split_meta_df["rgb_path"] = None
split_meta_df["rgb_mean"] = np.nan
split_meta_df["rgb_std"] = np.nan
split_meta_df["rgb_min"] = np.nan
split_meta_df["rgb_max"] = np.nan
split_meta_df["depth_path"] = None
split_meta_df["depth_mean"] = np.nan
split_meta_df["depth_std"] = np.nan
split_meta_df["depth_min"] = np.nan
split_meta_df["depth_max"] = np.nan
split_meta_df["invalid_ratio"] = np.nan

for i, row in tqdm(split_meta_df.iterrows(), total=len(split_meta_df)):
# Load data
rgb_path = os.path.join(
row.scene_name,
"images",
f"scene_{row.camera_name}_final_hdf5",
f"frame.{row.frame_id:04d}.color.hdf5",
)
dist_path = os.path.join(
row.scene_name,
"images",
f"scene_{row.camera_name}_geometry_hdf5",
f"frame.{row.frame_id:04d}.depth_meters.hdf5",
)
render_entity_id_path = os.path.join(
row.scene_name,
"images",
f"scene_{row.camera_name}_geometry_hdf5",
f"frame.{row.frame_id:04d}.render_entity_id.hdf5",
)
assert os.path.exists(os.path.join(dataset_dir, rgb_path))
assert os.path.exists(os.path.join(dataset_dir, dist_path))

with h5py.File(os.path.join(dataset_dir, rgb_path), "r") as f:
rgb = np.array(f["dataset"]).astype(float)
with h5py.File(os.path.join(dataset_dir, dist_path), "r") as f:
dist_from_center = np.array(f["dataset"]).astype(float)
with h5py.File(os.path.join(dataset_dir, render_entity_id_path), "r") as f:
render_entity_id = np.array(f["dataset"]).astype(int)

# Tone map
rgb_color_tm = tone_map(rgb, render_entity_id)
rgb_int = (rgb_color_tm * 255).astype(np.uint8) # [H, W, RGB]

# Distance -> depth
plane_depth = dist_2_depth(
IMG_WIDTH, IMG_HEIGHT, FOCAL_LENGTH, dist_from_center
)
valid_mask = render_entity_id != -1

# Record invalid ratio
invalid_ratio = (np.prod(valid_mask.shape) - valid_mask.sum()) / np.prod(
valid_mask.shape
)
plane_depth[~valid_mask] = 0

# Save as png
scene_path = row.scene_name
if not os.path.exists(os.path.join(split_output_dir, row.scene_name)):
os.makedirs(os.path.join(split_output_dir, row.scene_name))

rgb_name = f"rgb_{row.camera_name}_fr{row.frame_id:04d}.png"
rgb_path = os.path.join(scene_path, rgb_name)
cv2.imwrite(
os.path.join(split_output_dir, rgb_path),
cv2.cvtColor(rgb_int, cv2.COLOR_RGB2BGR),
)

plane_depth *= 1000.0
plane_depth = plane_depth.astype(np.uint16)
depth_name = f"depth_plane_{row.camera_name}_fr{row.frame_id:04d}.png"
depth_path = os.path.join(scene_path, depth_name)
cv2.imwrite(os.path.join(split_output_dir, depth_path), plane_depth)

# Meta data
split_meta_df.at[i, "rgb_path"] = rgb_path
split_meta_df.at[i, "rgb_mean"] = np.mean(rgb_int)
split_meta_df.at[i, "rgb_std"] = np.std(rgb_int)
split_meta_df.at[i, "rgb_min"] = np.min(rgb_int)
split_meta_df.at[i, "rgb_max"] = np.max(rgb_int)

split_meta_df.at[i, "depth_path"] = depth_path
restored_depth = plane_depth / 1000.0
split_meta_df.at[i, "depth_mean"] = np.mean(restored_depth)
split_meta_df.at[i, "depth_std"] = np.std(restored_depth)
split_meta_df.at[i, "depth_min"] = np.min(restored_depth)
split_meta_df.at[i, "depth_max"] = np.max(restored_depth)

split_meta_df.at[i, "invalid_ratio"] = invalid_ratio

with open(
os.path.join(split_output_dir, f"filename_list_{split}.txt"), "w+"
) as f:
lines = split_meta_df.apply(
lambda r: f"{r['rgb_path']} {r['depth_path']}", axis=1
).tolist()
f.writelines("\n".join(lines))

with open(
os.path.join(split_output_dir, f"filename_meta_{split}.csv"), "w+"
) as f:
split_meta_df.to_csv(f, header=True)

print("Preprocess finished")

0 comments on commit dfc2e11

Please sign in to comment.