-
Notifications
You must be signed in to change notification settings - Fork 145
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #64 from prs-eth/hypersim_preprocess
hypersim preprocessing scripts
- Loading branch information
Showing
3 changed files
with
240 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# Hypersim preprocessing | ||
|
||
## Download | ||
|
||
Download [Hypersim](https://github.com/apple/ml-hypersim) dataset using [this script](https://github.com/apple/ml-hypersim/blob/20f398f4387aeca73175494d6a2568f37f372150/code/python/tools/dataset_download_images.py). | ||
|
||
Download the scene split file from [here](https://github.com/apple/ml-hypersim/blob/main/evermotion_dataset/analysis/metadata_images_split_scene_v1.csv). | ||
|
||
## Process dataset | ||
|
||
Run the preprocessing script: | ||
|
||
```bash | ||
python script/dataset_preprocess/hypersim/preprocess_hypersim.py --split_csv /path/to/metadata_images_split_scene_v1.csv | ||
``` | ||
|
||
(optional) Tar the processed data, for example: | ||
|
||
```bash | ||
cd data/Hypersim/processed/train | ||
tar -cf ../../hypersim_processed_train.tar . | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Author: Bingxin Ke | ||
# Last modified: 2024-02-19 | ||
|
||
|
||
from pylab import count_nonzero, clip, np | ||
|
||
|
||
# Adapted from https://github.com/apple/ml-hypersim/blob/main/code/python/tools/scene_generate_images_tonemap.py | ||
def tone_map(rgb, entity_id_map): | ||
assert (entity_id_map != 0).all() | ||
|
||
gamma = 1.0 / 2.2 # standard gamma correction exponent | ||
inv_gamma = 1.0 / gamma | ||
percentile = ( | ||
90 # we want this percentile brightness value in the unmodified image... | ||
) | ||
brightness_nth_percentile_desired = 0.8 # ...to be this bright after scaling | ||
|
||
valid_mask = entity_id_map != -1 | ||
|
||
if count_nonzero(valid_mask) == 0: | ||
scale = 1.0 # if there are no valid pixels, then set scale to 1.0 | ||
else: | ||
brightness = ( | ||
0.3 * rgb[:, :, 0] + 0.59 * rgb[:, :, 1] + 0.11 * rgb[:, :, 2] | ||
) # "CCIR601 YIQ" method for computing brightness | ||
brightness_valid = brightness[valid_mask] | ||
|
||
eps = 0.0001 # if the kth percentile brightness value in the unmodified image is less than this, set the scale to 0.0 to avoid divide-by-zero | ||
brightness_nth_percentile_current = np.percentile(brightness_valid, percentile) | ||
|
||
if brightness_nth_percentile_current < eps: | ||
scale = 0.0 | ||
else: | ||
# Snavely uses the following expression in the code at https://github.com/snavely/pbrs_tonemapper/blob/master/tonemap_rgbe.py: | ||
# scale = np.exp(np.log(brightness_nth_percentile_desired)*inv_gamma - np.log(brightness_nth_percentile_current)) | ||
# | ||
# Our expression below is equivalent, but is more intuitive, because it follows more directly from the expression: | ||
# (scale*brightness_nth_percentile_current)^gamma = brightness_nth_percentile_desired | ||
|
||
scale = ( | ||
np.power(brightness_nth_percentile_desired, inv_gamma) | ||
/ brightness_nth_percentile_current | ||
) | ||
|
||
rgb_color_tm = np.power(np.maximum(scale * rgb, 0), gamma) | ||
rgb_color_tm = clip(rgb_color_tm, 0, 1) | ||
return rgb_color_tm | ||
|
||
|
||
# According to https://github.com/apple/ml-hypersim/issues/9 | ||
def dist_2_depth(width, height, flt_focal, distance): | ||
img_plane_x = ( | ||
np.linspace((-0.5 * width) + 0.5, (0.5 * width) - 0.5, width) | ||
.reshape(1, width) | ||
.repeat(height, 0) | ||
.astype(np.float32)[:, :, None] | ||
) | ||
img_plane_y = ( | ||
np.linspace((-0.5 * height) + 0.5, (0.5 * height) - 0.5, height) | ||
.reshape(height, 1) | ||
.repeat(width, 1) | ||
.astype(np.float32)[:, :, None] | ||
) | ||
img_plane_z = np.full([height, width, 1], flt_focal, np.float32) | ||
img_plane = np.concatenate([img_plane_x, img_plane_y, img_plane_z], 2) | ||
|
||
depth = distance / np.linalg.norm(img_plane, 2, 2) * flt_focal | ||
return depth |
149 changes: 149 additions & 0 deletions
149
script/dataset_preprocess/hypersim/preprocess_hypersim.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
# Author: Bingxin Ke | ||
# Last modified: 2024-02-19 | ||
|
||
import argparse | ||
import os | ||
|
||
import cv2 | ||
import h5py | ||
import numpy as np | ||
import pandas as pd | ||
from hypersim_util import dist_2_depth, tone_map | ||
from tqdm import tqdm | ||
|
||
IMG_WIDTH = 1024 | ||
IMG_HEIGHT = 768 | ||
FOCAL_LENGTH = 886.81 | ||
|
||
if "__main__" == __name__: | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--split_csv", | ||
type=str, | ||
default="data/Hypersim/metadata_images_split_scene_v1.csv", | ||
) | ||
parser.add_argument("--dataset_dir", type=str, default="data/Hypersim/raw_data") | ||
parser.add_argument("--output_dir", type=str, default="data/Hypersim/processed") | ||
|
||
args = parser.parse_args() | ||
|
||
split_csv = args.split_csv | ||
dataset_dir = args.dataset_dir | ||
output_dir = args.output_dir | ||
|
||
# %% | ||
raw_meta_df = pd.read_csv(split_csv) | ||
meta_df = raw_meta_df[raw_meta_df.included_in_public_release].copy() | ||
|
||
# %% | ||
for split in ["train", "val", "test"]: | ||
split_output_dir = os.path.join(output_dir, split) | ||
os.makedirs(split_output_dir) | ||
|
||
split_meta_df = meta_df[meta_df.split_partition_name == split].copy() | ||
split_meta_df["rgb_path"] = None | ||
split_meta_df["rgb_mean"] = np.nan | ||
split_meta_df["rgb_std"] = np.nan | ||
split_meta_df["rgb_min"] = np.nan | ||
split_meta_df["rgb_max"] = np.nan | ||
split_meta_df["depth_path"] = None | ||
split_meta_df["depth_mean"] = np.nan | ||
split_meta_df["depth_std"] = np.nan | ||
split_meta_df["depth_min"] = np.nan | ||
split_meta_df["depth_max"] = np.nan | ||
split_meta_df["invalid_ratio"] = np.nan | ||
|
||
for i, row in tqdm(split_meta_df.iterrows(), total=len(split_meta_df)): | ||
# Load data | ||
rgb_path = os.path.join( | ||
row.scene_name, | ||
"images", | ||
f"scene_{row.camera_name}_final_hdf5", | ||
f"frame.{row.frame_id:04d}.color.hdf5", | ||
) | ||
dist_path = os.path.join( | ||
row.scene_name, | ||
"images", | ||
f"scene_{row.camera_name}_geometry_hdf5", | ||
f"frame.{row.frame_id:04d}.depth_meters.hdf5", | ||
) | ||
render_entity_id_path = os.path.join( | ||
row.scene_name, | ||
"images", | ||
f"scene_{row.camera_name}_geometry_hdf5", | ||
f"frame.{row.frame_id:04d}.render_entity_id.hdf5", | ||
) | ||
assert os.path.exists(os.path.join(dataset_dir, rgb_path)) | ||
assert os.path.exists(os.path.join(dataset_dir, dist_path)) | ||
|
||
with h5py.File(os.path.join(dataset_dir, rgb_path), "r") as f: | ||
rgb = np.array(f["dataset"]).astype(float) | ||
with h5py.File(os.path.join(dataset_dir, dist_path), "r") as f: | ||
dist_from_center = np.array(f["dataset"]).astype(float) | ||
with h5py.File(os.path.join(dataset_dir, render_entity_id_path), "r") as f: | ||
render_entity_id = np.array(f["dataset"]).astype(int) | ||
|
||
# Tone map | ||
rgb_color_tm = tone_map(rgb, render_entity_id) | ||
rgb_int = (rgb_color_tm * 255).astype(np.uint8) # [H, W, RGB] | ||
|
||
# Distance -> depth | ||
plane_depth = dist_2_depth( | ||
IMG_WIDTH, IMG_HEIGHT, FOCAL_LENGTH, dist_from_center | ||
) | ||
valid_mask = render_entity_id != -1 | ||
|
||
# Record invalid ratio | ||
invalid_ratio = (np.prod(valid_mask.shape) - valid_mask.sum()) / np.prod( | ||
valid_mask.shape | ||
) | ||
plane_depth[~valid_mask] = 0 | ||
|
||
# Save as png | ||
scene_path = row.scene_name | ||
if not os.path.exists(os.path.join(split_output_dir, row.scene_name)): | ||
os.makedirs(os.path.join(split_output_dir, row.scene_name)) | ||
|
||
rgb_name = f"rgb_{row.camera_name}_fr{row.frame_id:04d}.png" | ||
rgb_path = os.path.join(scene_path, rgb_name) | ||
cv2.imwrite( | ||
os.path.join(split_output_dir, rgb_path), | ||
cv2.cvtColor(rgb_int, cv2.COLOR_RGB2BGR), | ||
) | ||
|
||
plane_depth *= 1000.0 | ||
plane_depth = plane_depth.astype(np.uint16) | ||
depth_name = f"depth_plane_{row.camera_name}_fr{row.frame_id:04d}.png" | ||
depth_path = os.path.join(scene_path, depth_name) | ||
cv2.imwrite(os.path.join(split_output_dir, depth_path), plane_depth) | ||
|
||
# Meta data | ||
split_meta_df.at[i, "rgb_path"] = rgb_path | ||
split_meta_df.at[i, "rgb_mean"] = np.mean(rgb_int) | ||
split_meta_df.at[i, "rgb_std"] = np.std(rgb_int) | ||
split_meta_df.at[i, "rgb_min"] = np.min(rgb_int) | ||
split_meta_df.at[i, "rgb_max"] = np.max(rgb_int) | ||
|
||
split_meta_df.at[i, "depth_path"] = depth_path | ||
restored_depth = plane_depth / 1000.0 | ||
split_meta_df.at[i, "depth_mean"] = np.mean(restored_depth) | ||
split_meta_df.at[i, "depth_std"] = np.std(restored_depth) | ||
split_meta_df.at[i, "depth_min"] = np.min(restored_depth) | ||
split_meta_df.at[i, "depth_max"] = np.max(restored_depth) | ||
|
||
split_meta_df.at[i, "invalid_ratio"] = invalid_ratio | ||
|
||
with open( | ||
os.path.join(split_output_dir, f"filename_list_{split}.txt"), "w+" | ||
) as f: | ||
lines = split_meta_df.apply( | ||
lambda r: f"{r['rgb_path']} {r['depth_path']}", axis=1 | ||
).tolist() | ||
f.writelines("\n".join(lines)) | ||
|
||
with open( | ||
os.path.join(split_output_dir, f"filename_meta_{split}.csv"), "w+" | ||
) as f: | ||
split_meta_df.to_csv(f, header=True) | ||
|
||
print("Preprocess finished") |